JPS

PDVip - Position Control VECTOR INVERTER INSTRUCTION MANUAL

Attention to these warning signs on the inverter or in this instruction book.
 They indicate danger to human body or damage to the inverter.

Before installing and putting the inverter into operation, please read the safety precautions and warnings following this page.

Safety precautions \& warnings

Read carefully all the safety precautions included in these operating instructions and all the warning signs attached to the inverter. Make sure that the warning signs are kept in a legible condition and replace missing or damaged signs. Before starting, familiarize yourself with the operation of the inverter. It may be too late if you start working with the inverter before read this instruction manual.
Never permit unqualified personnel to operate the inverter.

\triangle

WARNING

This inverter produces dangerous electrical voltages and controls rotating mechanical parts. Death, severe injury or substantial damage to property cam occur if the instructions in this operating manual are not comploed with.
Only personnel with appropriate qualifications should work with this inverter. These personnel must be familiar with all the warning signs and precautions laid out in these operating instructions for the transport, installation and operation of this inverter.
The successful and safe use of this inverter depends on the correct installation, comissioning, operation and maintenance of the inverter.
** The PD inverter operates at high voltages.
** The DC-link capacitor remain charged to dnagerous voltages even the power is removed. For this reason it is not permissible to open the inverter cover until ten minutes after the power has
been turned off. When handling the open inverter it should be noted that live parts are exposed.
Do not touch these live parts.
** The following terminals can carry dangerous voltages even if the motor is inoperative:
The power supply terminal L1,L2/N (or R,S,T)
The motor terminal U,V,W
The DC-link terminal P,N
The brake resistor terminal $\mathrm{Br}+, \mathrm{Br}-$
** Only qualified personnel may connect, start the system up and repair faults.
These personnel must be thoroughly acquainted with all the warnings and operating procedures contained with this manual.
** Certain parameter settings may cause the inverter to start up automatically after an input power failure.

DEFINITIONS

Qualified Person

For the purposes of this manual and product labels. a qualified person is one who is familiar with the installation, construction, operation and maintenance of this inverter and with hazards involved. In addition, the person must be:
(1) Trained and authorised to energize, de-energize, clear, ground and tag circuits and equipment in accordance with established safety practices.
(2) Trained in the proper care and use of protective equipment in accordance with established safety practices.
(3) Trained in rendering first aid.

Danger

For the purposes of this manual and product labels, DANGER indicates that loss of life, severe personal injury or substantial property damage WILL result if proper precautions are not taken.

Warning

For the purposes of this manual and product labels, WARNING indicates that loss of life, severe personal injury or substantial property damage CAN result if proper precautions are not taken.

Caution

For the purpose of this manual and product labels, CAUTION indicates that minor personal injury or property damage CAN result if proper precautions are not taken.

Note

For the purpose of this manual and product labels, NOTES merely call attention to information that is especially significant in understanding and operating the drive.

DANGER and WARNING

Make sure that the location selected for installation is safe, protected from moisture and splash and drip-proof! Children and the general public must be prevented from accessing or approaching the equipment!

The equipment may only be used for the purpose specified by the manufacturer.
Unauthorized modifications and the use of spare parts and accessories that are not sold or recommended by the manufacturer of the equipment can cause fires, electric shocks and injuries.

Keep these operating instructions within easy reach and give them to all users !

CONTENTS

1 DESCRIPTION OF PD-SERIES INVERTER
1.1 General description and Design philosophy
1.2 Hardware Input \& Output configuration

2 INSTALLATION
2.1 Outline Dimensions
2.2 Power terminal
2.3 Connect power line to Inverter
2.4 Connect Inverter output to Motor
2.5 DC Bus or Brake Discharge terminal
2.6 Control terminal connection

3 CONTROL PANEL
3.1 Local panel
3.2 Remote panel

4 SYSTEM START-UP
4.1 Reset \& Initialize the Inverter
4.2 Simple Start-Up and Run by control Key-pad
4.3 Monitor the running status
4.4 Apply inverter to your system

5 PARAMETERS
5.1 Parameter List
5.2 Parameter Protection
5.3 Parameter Initialization
5.4 Parameter description

6 RUN/STOP/FWD/REV CONTROL COMMAND
7 SELECTION OF SET FREQUENCY INPUT SOURCE
7.1 Selection Chart
7.2 Speed source description

8 SELECTION OF DIGITAL INPUT FUNCTION
9 SELECTION OF DIGITAL OUTPUT AND RELAY FUNCTION
10 SELECTION OF ANALOG OUTPUT FUNCTION
11 SPEED SEARCH AND BASE BLOCK FUNCTION
13 MONITOR FUNCTION
13.1 Operating Status check
13.2 Terminal Status check
13.3 A/D Converter check

14 MAINTENANCE AND ERROR MESSAGE
15 COMPUTER CONTROL
15.1 Protocal \& Format
15.2 Computer to Inverter
15.3 Inverter to Computer
15.4 Sample Program

16 BLOCK DIAGRAM OF PD-INVERTER

1 Description of PD Series inverter

1.1 General description and Design philosophy

The PD Series inverter is a POWER CONVERTER for variable-speed AC drives.
It applies the Pulse Width Modulation method to control the output voltage and frequency to the motor. The design of hardware and firmware are based on advanced microprocessor technology.
Power Device "IGBT" is used to increase switching carrier frequency for eliminating the motor operation noise. Many unique functions built in this Inverter series, are very useful to customers for all kinds of application.

Built-in standard UP/DOWN Counter Module, Timer/Counter Module and Flip/Flop Module which are very often used in actual application system . Output current waveform is trimmed to run the motor smoothly even if under low running frequency.
Special C.O.D.(Current Over Detector) Module can monitor output current and generate warning signal for sophisticate control.
Four digital inputs and three digital outputs are all programmable to meet all kinds of applications.
Two analog inputs AI1 \& AI2 are provided for voltage, current control. Moreover, the two inputs can serve as AI1*AI2 or AI2+AI1 or other combinations out of your imagination.
RS485 serial communication port is built in to the inverter as standard. It is very useful when inverter or many inverters would like to be dynamical controlled by master computer. With repeater one serial port can address up to 99 inverters. (Standard RS485 driver can drive up to 31 inverters
only.)
Two types of panel LOCAL and REMOTE are designed for PD Series. Refer to Section $\mathbf{3}$ for detail description. The PD Series inverter is composed by three major parts : PANEL, CONTROL BOARD \& POWER
CONVERSION UNIT.

1.2 Hardware input \& output configuration

The terminal of the control board is :

[^0]
1.2.1 Analog input blocks (Refer to Sec. 7)

AI1 and AI2 are analog input terminals. AM terminal is used for analog signal output. ACOM is the common terminal for analog circuit. The $\mathbf{5 V}$ terminal supply analog +5 volt. Inside the control board, there are two jumpers JP1 and JP2.

1.2.1.a Analog input AI1 module

JP1 is used to define the characteristic of the input terminals AI1.

If you are using external analog voltage $0 \sim+10 \mathrm{~V}$ input, please use AI1 and select $\mathbf{J P} 1$ to $+\mathbf{1 0} \mathbf{V}$ position.

If you are using external analog voltage $-5 \mathrm{~V} \sim+5 \mathrm{~V}$ input, please use AI1 and select JP1 to $+/-\mathbf{5 V}$ position.

1.2.1.b Analog input AI2 module

$\mathbf{J P 2}$ is used to define the characteristic of the input terminal AI2.
If you are using $0 \sim+5 \mathrm{~V}$ input(external or internal voltage reference), please use AI2 and select JP2 to $\mathbf{+ 5 V}$ position.
If you are using external 20 mA current input, please select AI2 and select $\mathbf{J P 2}$ to $\mathbf{2 0 m A}$ position.

module (Refer to Sec.10)

The output voltage of AM terminal comes from CPU in PWM waveform. Its duty cycle is proportional to the desired analog amplitude. And the signal is filtered by internal resistor R and capacitor C .

1.2.3 Digital input modules (DI1 ~ DI4) and Control Command inputs (RUN \& REV)

DI1, DI2, DI3 and DI4 are identical four programmable digital input terminals. DCOM is the common point for the digital circuits. User should use dry contact or Open collector output between DIx and DCOM to drive these digital inputs.
RUN and REV inputs have same structure as DIx.

1.2.4 Digital output terminals (Refer to Sec. 9)

There are three digital output signals available to the user. Two of them are designed as open collector output, another is voltage isolated " $1 \mathbf{1 a}$ " contact of relay output.
Open collector outputs are named as DO1 and DO2, DCOM is the common point.
The relay output is terminals RY1, RY2 . (Note RY1,RY2 should drive 24 V relay only.)

1.2.5 Hardware RESET terminal (RST)

The input hardware structure is similar to DIx.
Terminal RST is used for reset the inverter. Under any circumstances, RST and DCOM shorted together will force the inverter execute RESET, as if Power On again.

2 INSTALLATION

4 WARNING

To guarantee the safe operation of the equipment it must be installed and commissioned properly by qualified personnel in compliance with warnings laid down in these operating instructions.
Take particular note of the general and regional installation and safety regulations regarding work on high voltage regulations, as well as the relevant regulations regarding the correct use of tools and personal protective gear.
Make sure that the unobstructed clearance for each of the cooling inlets and outlets above and below the inverter is at least 100 mm .
Make sure that a space of 40 mm is kept free at the sides of the inverter to permit the cooling air to escape from the side slits.
Ensure that the temperature does not exceed the specified level when the inverter is installed in cubicle.
Avoid excessive vibration and shaking of the equipment.

NOTE

Please consider the possible use of options, such as Discharge Units, RFI suppression filters at the planning stage.

2.1 Outline Dimensions

Outline Drawing

Fig. 1

Fig. 3

Fig. 2

Fig. 4

Dimension Table

Model	Drawing	A	B	C	D	E	F	Mounting Screw
2007	Fig.1	204	113.5	156.8	182	98.3	-	M4
$2007 N$ $4007 N$	Fig.2	227	176.6	120.5	195	164.6	215	M4
$2015 N$ $4015 N$	Fig.2	227	176.4	140.5	195	164.4	215	M4
2022 2037 4007 4015 4022 4037	Fig.2	270	214	179	236	202	258	M4
2055 2075 4055 4075	Fig.3	385	240	218.2	270	223	373	M5
2110 2150 4110 4150	Fig.4	584	295	201.2	555.4	240		
2225								
2300								
4225								
4300	Fig.4	729	403	247	704.6	345		M8

2.2 Power Terminal

The lower cover must be removed to connect the electrical leads.
Basically, the Power terminals are divided into three portions :
a. The Power line input, (R, S, T or $L 1, L 2$) receives power for the operation of the inverter.
b. The Motor line output, ($\mathbf{U}, \mathbf{V}, \mathbf{W}$) delivers Variable Frequency output to motor leads.
c. the DC bus (P,N)or Discharge transistor output BR terminals.

WARNING

For different models, the power terminals may have different configurations as below :
Type 1 :

B- B+

L1 N/L2 $\xlongequal{\perp} \quad \mathrm{U} \quad \mathrm{V} \quad \mathrm{W}$

Model : 2007

[^1]Type 2 :

BR1 BR2

Model : 2007N/2015N \& 2015 ~ 2037 \& 4007 ~ 4037

* For 2xxx Series , R,S,T are 220VAC three phase power line input.
* For 4xxx Series, user must specify exact power line input voltage. Either 380 or 440VAC.
* BR1, BR2 connect to brake resistor.
* Must connect to $\mathrm{R} \& \mathrm{~T}$ for only single phase input.

Type 3 :

Model : 2055~2300 \& 4055~4300

* For 2xxx Series , R,S,T are 220VAC three phase power line input.
* For 4xxx Series, user must specify exact power line input voltage. Either 380 or 440VAC.
* U,V,W connect to Motor.
* P, N terminals direct connect to internal condensor.

User can connect a STANDARD BRAKE MODULE through P,N terminals.

* Must connect to R \& T for only single phase input.

Type 4 :

Model : 2055D ~ 2150D \& 4055D ~ 4150D

* For 2xxx Series, \quad R,S,T are 220VAC three phase power line input.
* For 4xxx Series, user must specify exact power line input voltage. Either 380 or 440VAC.
* U,V,W connect to Motor.
* BR terminals can connect to BRAKE RESISTOR
* Must connect to R \& T for only single phase input.

2.3 Connect Power line input to Inverter
 WARNING and CAUTION

Between the power line and the inverter, add NFB for system protection. In PD series, the power input terminal is ($\mathrm{L} 1, \mathrm{~L} 2 / \mathrm{N}$) or ($\mathrm{R}, \mathrm{S}, \mathrm{T}$).
There are static sensitive components inside the Printed Circuit Board. Avoid touching the boards or components with your hands or metal objects.
Only the terminal screws may be touched with the insulated screwdrivers when connecting the leads.
Make sure to connect the power terminals tight and correctly.
Make sure that the power source supplies the correct voltage and is designed for the necessary current.
Make sure the motor is configured to match the input voltage.
Protective EARTH terminal marked with $\xlongequal{\ominus}$ must be connected properly.
Take care that the appropriate circuit breakers with the specified current rating are connected between the power supply and the inverter.

2.4 Connect inverter output to Motor

WARNING :

Do not insert contactors between inverter output and motor.
For every model, "U,V, W" are the three phase output terminals, they should be connected to motor leads directly.

2.5 DC Bus or Brake Discharge terminal

\triangle CAUTION:

Some smaller power rating models , the discharge transistor is built in as standard. For these models, the BR terminals are assigned for connecting to the external resistor.
For models without built in discharge transistor, two terminal points \mathbf{P} and \mathbf{N} is reserved for customer to use Brake Discharge Unit.
For models which have BR terminal , the recommended resistor is shown in the list.
However, in case the inertia is large or discharge duty cycle is high, user may increase the Wattage of the resistor.

Model	Resistor(OHM)	Watt	
PD-2007	200	80	
PD-2015	100	150	
PD-2022	60	250	
PD-2037	40	300	
PD-2055-D	30	500	
PD-2075-D	20	600	
PD-2110-D	15	1000	
PD-2150-D	10	1500	
-	-	-	
PD-4007	750	80	
PD-4015	400	150	
PD-4022	250	250	
PD-4037	150	300	
PD-4055-D	100	500	
PD-4075-D	75	700	
PD-4150-D	50	1000	

4 WARNING : Do not connect resistor to the P, N terminals directly.

For models with \mathbf{P}, \mathbf{N} terminal only, means no discharge transistor is inside the inverter. If discharge function is necessary customer must use separate Brake Discharge UNIT . Terminal \mathbf{P} is connected to the positive point of internal DC-bus, and \mathbf{N} is connected to the negative point.

2.6 Control terminal connection

\triangle caution

All the input/output control signal lines, or remote panel lines and communication lines must be laid seperately from the high current power/motor/brake lines.
They must not be fed through the same cabel conduit/trunking.

3 CONTROL PANEL

This inverter supports two types of control panel. One is called Local Panel, the other is Remote Panel. User may use both Panels one the same inverter at the same time.
Note : While both panels are used, the Local panel can only operate under MONitor mode
Local panel can mount on the upper cover directly and connect to the control board through a IDC-40 pins flat cable.
Remote panel is connected to the inverter through a 5-pin connector using RS485 serial communication signal lines.

3.1 LOCAL PANEL

On LOCAL Panel there are four digit 7-segment data display and four indication led's and eight membrane keys. Four possible operation modes : "CTL", "MON", "PAR" and "ALM" are described follows :

3.1.1 CTL mode

Push the "CTL/MON" key, will toggle between "CTL" or "MON" Mode.
If both "HZ" and "I" Led are blank, it is under "CTL" Mode. Under "CTL" Mode, user can control the inverter running in either direction and may modify the desired running speed.

The key's functions are :
FWD key is used for running the inverter in forward direction.
REV key is used for running the inverter in reverse direction.
STOP key is used to stop the inverter.
RD/WT key has two function : READ from or WRITE to Pr. 00 .
A key is used to increase the set frequency or the data read from Pr. 00 .
key is used to decrease the set frequency or the data read from Pr. 00 .

3.1.2 MON mode

Push the "CTL/MON" key, will toggle the inverter between "CTL" or "MON" Mode.
Under "MON" Mode, user can control the inverter running in either direction and may monitor any two internal status easily.(Refer to Sec.13)
If "HZ" Led is on, it is under "MON" Mode and 7-segment shows the "HZ" data.(Or the desired parameter assigned by Pr.99)
If "I" Led is on, it is under "MON"Mode and 7-segment shows the "I" data.(Or the desired parameter assigned by Pr.98) FWD key is used for running the inverter in forward direction.
REV key is used for running the inverter in reverse direction.
STOP key is used to STOP the inverter.
key is used to select "HZ" or "I" data shown on the 7 -segment display.

3.1.3 PAR mode

Push the "PAR/ALM" key, will toggle between "PAR" or "ALM" mode.
If push PAR/ALM key, 7 -segment shows "Pr.xx", it is under "PAR" Mode.
If push PAR/ALM key, 7 -segment shows " $0 .-\mathrm{xx}$ ", it is under "ALM" Mode.
Under "PAR" Mode, user can modify or monitor all the internal PARAMETERS.
To modify a parameter, follow the steps described below :
STEP 1: push "PAR/ALM" key, the 7-segment will show "Pr.nn". (nn is parameter number)
STEP 2: push or key to select desired parameter number.
STEP 3: push "RD/WT" key to READ the content of the specified parameter.
The 7 -segment now shows the value of the parameter.
STEP 4: push or key to modify the displayed value.
STEP 5: push "RD/WT" key to WRITE the value into EAROM memory.
STEP 6: push "PAR/ALM" repeat STEP 1.

3.1.4 ALM mode

Push the "PAR/ALM" key, will toggle the inverter between "PAR" or "ALM" mode.
If push PAR/ALM key, 7 -segment shows "0.-xx", it is under "ALM" Mode.
Under "ALM" Mode, the user can execute RESET function or monitor ALARM STATUS.
STOP/RESET key, the inverter will execute RESET function.
Δ and ∇ key are used to check ALARM History.

3.2 REMOTE PANEL

On REMOTE Panel there are four digit 7-segment data display , ten indication LED's and twenty-four membrane keys.
It will operate under five possible modes : "CTL", "MON", "PAR", "JOG", and "ALM" modes.
Note : The "AUTO" key on REMOTE PANEL has no effect in PD-Series.

3.2.1 CTL mode

Push "CTL" key, the Remote Panel enters CONTROL mode immediately.
Under "CTL" Mode, user can control the inverter running in either direction and may modify the desired running speed.
Example : If Pr.40=8, Just push "6","0" \& "FWD" will cause the inverter run at 60 Hz .
If $\operatorname{Pr} .40=0$, and $\operatorname{Pr} .00=50.00$, Just push "FWD" will cause the inverter run at 50 Hz .

The key's functions are :
FWD key is used for running the inverter in forward direction.
REV key is used for running the inverter in reverse direction.
STOP key is used to stop the inverter.
RD key is used to READ the preset speed stored in Pr.00.
WT key is used to WRITE new desired speed into Pr.00.
Number \& Decimal keys are used for modify the desired speed.

3.2.2 MON mode

Push "MON" key, the Remote Panel enters MONITOR mode immediately. Under "MON" Mode, user can control the inverter running in either direction and may monitor any two internal status easily.(Refer to Sec. 13)
If "HZ" Led is on, 7 -segment shows the "HZ" data(Or the desired parameter assigned by Pr.99)
If "I" Led is on, 7-segment shows the "I" data(Or the desired parameter assigned by Pr.98)
FWD key is used for running the inverter in forward direction.
REV key is used for running the inverter in reverse direction.
STOP key is used to stop the inverter.
$\triangle{ }_{\downarrow} \downarrow$
keys are used to select "HZ" or "I" data shown on the 7-segment display.

3.2.3 PAR mode

Push the "PAR" key, the Remote Panel enters PARAMETER mode immediately. Under "PAR" Mode, user can modify or monitor all the internal PARAMETERS. To modify a parameter, follow the steps described below :
STEP 1: Select Parameter \& READ.
For example, to read Pr.19, operate as follows:
push "PAR", push "1", push "9", push "RD".
Then the content of Pr. 19 will show on the 7-Segment display.
STEP 2: Modify parameter \& WRITE.
Follow the example to write the value 15 into Pr.19.
Select Pr. 19 as explained in STEP 1.
Push "1", push "5", push "WT".
Then the Pr. 19 contains the value 15.

3.2.4 JOG mode

Push the "JOG" key, the Remote Panel enters JOG mode immediately.
FWD key is used to run the inverter in forward direction.
REV key is used to run the inverter in reverse direction.
If the FWD, REV key released, the inverter STOP.

3.2.5 ALM mode

Push the "ALM" key, the Remote Panel enters ALARM mode immediately. STOP/RESET key is used to execute software RESET function.
A\& keys are used to check ALARM History

4 SYSTEM START-UP

Many operation methods were designed into the PD Series inverter. Here in this section, teaching you how to start running the inverter by simplest operation method.

4.1 Reset \& Initialize the inverter

If the inverter is new, and you are not sure of the parameter value in the inverter, please execute Memory Initialization. The initialization sequence is first set Pr.94=1(refer to section $\mathbf{3}$ and 5.3), then change to ALM mode until display show 0 . xx . Then push STOP/RESET key to start execute software reset and memory initialization. Or, connect RST terminal to DGND , then Inverter will execute hardware RESET immediately. After memory initialized, all parameters will be preload according to default values listed in Section 5.

4.2 Simple Start-up \& Run by key-pad

a. Set Pr. $00=60.00 \mathrm{~Hz}$
b. Set Pr. $39=0$
c. Set $\operatorname{Pr} .40=0$
d. Execute Reset

Just push FWD or REV key on the key-pad, the motor will run at frequency 60.00 Hz which is assigned by Pr. 00 .

4.3 Monitor the inverter running status

Enter MONITOR mode using LOCAL Panel :
Select MON mode by push CTL/MON key. Continuous pushing the CTL/MON will change the mode between CTL and MON mode. It is easy to distinguish that when any of Hz or I lamp is ON, the inverter is under MON mode. Enter MONITOR mode using REMOTE Panel :
Just push "MON" key the led on the "MON"key will light up.
Under MON mode, two parameter values can be easily selected and monitored .
Parameter Pr. 99 and Pr. 98 are used to select the most important parameters for monitoring.
In general, for example, we like to monitor the output frequency(stored in Pr.57) and the output current(stored in Pr.61). Therefore, the default values Pr. $99=57$ and $\operatorname{Pr} .98=61$ means selecting the output Hz and I for monitoring.
The and DOWN key is used to select the desired variable for monitoring on 7-segment display .

4.4 Apply inverter to your system

Real application system is not as simple as described above. Usually, it will require some interface signals using DIx, DOx , or AIx, ...
Further studying all the functions described follows, will help you design your application system more efficiently than before.

5 PARAMETERS

5.1 PARAMETERS LIST

There are total 100 parameters in PDVip series inverter.

Pr.xx	PARAMETER NAME	DEFAULT	Minimum	Maximum	TYPE
Pr. 00	MAIN SPEED SET	0 RPM	0	2400	R/W
Pr. 01	MAIN SPEED ACC	5.0 SEC	0.1	6553.0	R/W
Pr. 02	MAIN SPEED DEC	5.0 SEC	0.1	6553.0	R/W
Pr. 03	GO_COMMAND	0	0	7	TR/W
Pr. 04	STATUS_FLAGS	0000	0000	FFFF	M
Pr. 05	BRAKE SPEED	5 RPM	0	2400	R/W
Pr. 06	reserve				
Pr. 07	BRAKE TIME	1.0 SEC	0.0	25.0	R/W
Pr. 08	PULSE COUNTER	0	0	255	M
Pr. 09	PULSE GAIN	1	0	255	FR/W
Pr. 10	BASE SPEED	1800 RPM	0	2400	FR/W
Pr. 11	TEMPERARY ACC RATE	(Pr.01)	0.1	6553.0	TR/W
Pr. 12	TEMPERARY DEC RATE	(Pr.02)	0.1	6553.0	TR/W
Pr. 13	TEMPERARY DPI-1(High)	(Pr.22)	0	9999	TR/W
Pr. 14	TEMPERARY DPI-1(Low)	(Pr.23)	0	9999	TR/W
Pr. 15	MAXIMUM SPEED LIMIT	2400 RPM	0	2400	FR/W
Pr. 16	reserve				
Pr. 17	DSP MEMORY SELECT	0	0	255	TR/W
Pr. 18	DSPMEMORY DATA		0000	FFFF	M
Pr. 19	JOG SPEED	30 RPM	0	2400	R/W
Pr. 20	JOG ACC/DEC	5.0 SEC	0.1	25.0	R/W
Pr. 21	SPD1_SPEED_SET	0 RPM	0	2400	R/W
Pr. 22	DPI-1(High)	0	0	9999	R/W
Pr. 23	DPI-1(Low)	0	0	9999	R/W
Pr. 24	SPD2 SPEED SET	0 RPM	0	2400	R/W
Pr. 25	DPI-2(High)	0	0	9999	R/W
Pr. 26	DPI-2(Low)	0	0	9999	R/W
Pr. 27	SPD3 SPEED SET	0 RPM	0	2400	R/W
Pr. 28	DPI-3(High)	0	0	9999	R/W
Pr. 29	DPI-3(Low)	0	0	9999	R/W
Pr. 30	FREE RUN STOP	0	0	1	R/W
Pr. 31	REVERSE INHIBIT	0	0	1	R/W
Pr. 32	S_CURVE TIME	0.0 SEC	0.0	4.0	R/W
Pr. 33	DISCHARGE ENABLE	0	0	1	R/W
Pr. 34	UP/OP RESTART ENABLE	0	0	1	R/W
Pr. 35	STALL LEVEL	160 \%	10	200	R/W
Pr. 36	POWER FAIL STOP TIME	2.0 SEC	0.1	25.0	R/W
Pr. 37	AM SELECT	0	0	7	R/W
Pr. 38	AM GAIN	255	0	255	R/W
Pr. 39	CONTROL CMD SELECT	0	0	2	R/W
Pr. 40	SPEED INPUT SELECT	8	0	22	R/W
Pr. 41	DI1 SELECT	0	0	47	R/W
Pr. 42	DI2 SELECT	0	0	47	R/W
Pr. 43	DI3 SELECT	0	0	47	R/W
Pr. 44	DI4 SELECT	0	0	47	R/W
Pr. 45	DO1 SELECT	0	0	57	R/W
Pr. 46	DO2 SELECT	0	0	57	R/W
Pr. 47	RELAY SELECT	4	0	57	R/W
Pr. 48	IRMS Detector LEVEL	100 \%	10	150	R/W
Pr. 49	SPEED Detect LEVEL	900 RPM	0	2400	R/W

Pr.xx	PARAMETER NAME	DEFAULT	Minimum	Maximum	TYPE
Pr. 50	SPEED Detect TOLERANCE	5 RPM	0	250	R/W
Pr. 51	THERMAL TIME	60 SEC	0	120	R/W
Pr. 52	PITCH	8192	500	9999	R/W
Pr. 53	reserve				
Pr. 54	IRMS SELECT	0	0	1	R/W
Pr. 55	A/D CHANNEL SELECT	0	0	4	R/W
Pr. 56	A/D DATA				M
Pr. 57	HZ				M
Pr. 58	RPM				M
Pr. 59	VDC INPUT				M
Pr. 60	reserve				M
Pr. 61	IRMS				M
Pr. 62	POSITION COUNTER(High)	0	0	FFFF	M
Pr. 63	POSITION COUNTER(Low)	0	0	FFFF	M
Pr. 64	POSITION ERROR	0	0	FFFF	M
Pr. 65	FIELD CURRENT	25\%	0	50	FR/W
Pr. 66	APR Pgain	5	0	255	FR/W
Pr. 67	APR Igain	0	0	255	FR/W
Pr. 68	APR Dgain	0	0	255	FR/W
Pr. 69	IN POSITION RANGE	5	1	255	FR/W
Pr. 70	POSITION ERROR LIMIT	9999	1	9999	FR/W
Pr. 71	TIMER TIME	5.0 SEC	0.2	6553.0	R/W
Pr. 72	ACR Pgain	100	0	9999	FR/W
Pr. 73	ACR Igain	5	0	9999	FR/W
Pr. 74	CONTROL TYPE SELECT	0	0	3	FR/W
Pr. 75	reserve				
Pr. 76	ASR Pgain	500	0	9999	FR/W
Pr. 77	ASR Igain	5	0	255	FR/W
Pr. 78	MOTOR RATING	100 \%	0	100	FR/W
Pr. 79	FULL LOAD SPEED	1740 RPM	0	2400	FR/W
Pr. 80	TORQUE LIMIT-1	150	0	255	FR/W
Pr. 81	TORQUE LIMIT-2	150	0	255	FR/W
Pr. 82	MOTOR \& PG SELECT	7	1	8	FR/W
Pr. 83	IGBT GUARD TIME	3.0us	1.5	25.5	FR/W
Pr. 84	LINE VOLTAGE		40	1000	FR/W
Pr. 85	RATED CURRENT		0.5	3000.0	FR/W
Pr. 86	IRMS ADJUST		70	140	FR/W
Pr. 87	VDC ADJUST		70	140	FR/W
Pr. 88	TORQUE CONTROL \& FILTER	0054	0000	9999	FR/W
Pr. 89	AI1 LOW	12	0	1023	FR/W
Pr. 90	AI1 HIGH	1012	0	1023	FR/W
Pr. 91	AI2 LOW	12	0	1023	FR/W
Pr. 92	AI2 HIGH	1012	0	1023	FR/W
Pr. 93	UNIT NUMBER	1	1	99	FR/W
Pr. 94	RELOAD	0	0	1	R/W
Pr. 95	MEMORY PROTECT	0	0	1	R/W
Pr. 96	FACTORY WRITE ENABLE	0	0	1	R/W
Pr. 97	VERSION		7.00	7.99	R
Pr. 98	MONITOR(I)	61	0	99	R/W
Pr. 99	MONITOR(HZ)	58	0	99	R/W

Note :

1. The second column is the function name of parameters.
2. The third column is the default value after memory initialization.
3. Fourth column is the Minimum possible value of the parameter.
4. Fifth column is the Maximum possible value of the parameter.
5. Parameter type is shown in the TYPE column.
a. Type \mathbf{R} / \mathbf{W} means the parameter is stored in EAROM memory and may be Read or Write.
b. Type $\mathbf{F R} / \mathbf{W}$ means the parameter is stored in EAROM memory by factory control.

Unless by authorized engineer, this parameter is not allowed to change.
c. Type \mathbf{M} means the parameter is used for monitoring the status of inverter.

Write to this parameter has no effect.
d. Type \mathbf{R} means the parameter is a fixed constant.
e. Type TR/W means the parameter may read or write, but data will disappear after power off.

5.2 PARAMETER PROTECTION

Pr. 95 -- MEMORY PROTECT
Pr. 96 -- FACTORY WRITE ENABLE
If set Pr. $95=1$, all parameters(except Pr. 95 itself) are not allow to change.
If set $\operatorname{Pr} .95=0$, parameters with R / W type are allowed to change.
If set $\operatorname{Pr} .95=0$ and $\operatorname{Pr} .96=1$, all parameters include FR/W type may be changed.

5.3 PARAMETERS INITIALIZATION

Pr. 94 is used to INITIALIZE data into all parameters with R/W type.
Note : parameters with FR/W type will not be initialized by this method.
Follow the process to execute memory initialization
Step 1: \quad Write Pr. $95=0$, and Pr. $94=1$
Step 2: Execute "ALM" RESET
or Step 2: Execute Hardware RESET
or Step 2: Execute Power-On RESET
After initialization process, the data in EAROM memory will change to the DEFAULT values listed in the PARAMETERS LIST Table.

5.4 Description of all parameters

Pr. 00 MAIN SPEED SET
Pr. 00 is the Main Speed memorized in EAROM.
If SPEED SELECT(Pr.40)=0, this MAIN_SPEED_SET parameter will be used as the desired speed source.
Note : while the Panel is in"CTL" mode, $\overline{\text { READ or }}{ }^{-}$WRITE will always points to this parameter.
Pr. 01 MAIN SPEED ACC RATE
Pr. 02 MAIN SPEED DEC RATE
Pr. $01 \& \operatorname{Pr} .02$ are the preset ACC \& DEC time while inverter running.
The definition of the $\operatorname{Pr} .01$ (ACC) is "the period of time from 0 ramp up to 1800 RPM".
The definition of the Pr.02(DEC) is "the period of time from 1800 RPM ramp down to 0 ".
Pr. 03 GO_COMMAND
This command is usually used in position control mode. (Pr.74=2) And is very convenient while the inverter
is controlled by computer.
Pr. $03=0$: No function.
Pr.03=1: GO DPI-1. (Desired Position Increment 1)
he inverter will rotate the motor a fixed distance which is specified by Pr.22/23 .
DPI- $1=10000 *$ Pr. $22+\operatorname{Pr} .23$
This software command is similar to Digital Input function DIx_select=41.
Pr.03=2: GO DPI-2. (Desired Position Increment 2)
he inverter will rotate the motor a fixed distance which is specified by Pr.25/26.
DPI-1 $=10000 *$ Pr. $25+\operatorname{Pr} .26$
This software command is similar to Digital Input function DIx_select=42.
Pr. $03=3$: GO DPI-3. (Desired Position Increment 3)
The inverter will rotate the motor a fixed distance which is specified by Pr.28/29.
DPI-1 $=10000 * \operatorname{Pr} .28+\operatorname{Pr} .29$
This software command is similar to Digital Input function DIx_select=43.
Pr. $03=4$: Change into speed control mode
This software command is similar to Digital Input function DIx_select=44.

Pr. $03=5$: GO HOME

This software command is similar to Digital Input function DIx_select=45.
Pr. $03=6$: Reserve
Pr. $03=7$: LATCH COUNTER
The content of the 32-bits position counter will latched into Pr.62/63.
This is used to prevent erroneous reading, because Pr. 62 and Pr. 63 are not read at the same instance.
Pr. 04 STATUS FLAGS
Bit0 : status of Digital Input DI2
Bit1 : status of Digital Input DI4
Bit2 : status of Digital Input DI1
Bit3 : status of Digital Input DI3
Bit4 : status of TARGET_REGISTER_EMPTY flag
Bit5 : status of IN_POSITION flag
Bit6 : status of ERROR_OVER flag
Bit7 : status of SEARCHING_HOME flag
Bit8~15 : Reserved
Pr. 05 BRAKE SPEED
While deceleration to stop, if the output speed is lower than this parameter, then the inverter will change to Zero speed, and continue to hold in Zero speed for a time period determined by Pr. 07 .
Note : If under RUN command, the inverter will not execute braking, even if speed command is zero.
Pr. 06 Reserve
Pr. 07 BRAKE TIME
This parameter defines the Zero speed time.
RPM

RUNNING
Output signal DOx(7)

time

DOx(n) : Digital Output x , and select function-n
【Note】
Point-A : The RUN signal removed
Point-B : The motor speed is lower than Pr. 05
B--C : Zero speed with holding torque
After Point-C : The inverter cut off, and motor free run

Pr. 08 PULSE COUNTER
This parameter is used to monitors the content of the INPUT PULSE COUNTER.
Pr. 09 PULSE GAIN
This parameter defines the multiplication gain of input pulses from CON8.

Lower Right Corner of PCBOPDBASECx

The PDVip inverter includes an INPUT PULSE COUNTER(8-bits) in order to accumulate the input pulses from connector CON8 . And a Dip Switch is used to configure the hardware counter structure.
The internal hardware/software structure as following drawing

The INPUT PULSE COUNTER can be configured by a Dip Switch for different pulse types :
a. UP pulse \& DOWN pulse

Set switch SEL1=OFF, SEL2=ON .
The counter will count up at rising edge of X input .
The counter will count down at rising edge of Y input .
b. CLOCK pulse \& DIRECTION control

Set switch SEL1=ON, SEL2=OFF .
If $Y=1$, the counter will count up at rising edge of X input .
If $\mathrm{Y}=0$, the counter will count down at rising edge of X input .
c. Forward Quadrature Clock

Set switch SEL1=ON, SEL2=ON .
The counter will count up if signal X lead signal Y .
And count down if signal X lag signal Y .
d. Reverse Quadrature Clock

Set switch SEL1=OFF, SEL2=OFF .
The counter will count down if signal X lead signal Y .
And count up if signal X lag signal Y .

For Quadrature Clock mode, the hardware multiply factor is determined by the two Dip Switches MUL1 and MUL2 :
X1 : MUL1 $=\mathrm{ON}$, MUL2=ON
X2 : MUL1=OFF , MUL2=ON
X3 : MUL1=ON , MUL2=OFF
X4: MUL1=OFF, MUL2=OFF
【Note】 Pr. 09 is independent software gain control.
Pr. 10 BASE SPEED
This parameter determines the BASE SPEED of the motor.
Below BASE SPEED, the field current keep constant, the motor works under constant torque region. For speed
higher than the BASE SPEED, field current will decrease, let the motor works under constant horse power region.
Pr. 11 TEMPERARY ACC RATE
Pr. 12 TEMPERARY DEC RATE
Similar to Pr. $01 \& \operatorname{Pr} .02$. After inverter power ON, changing this parameter has the same effect as changing Pr. 01 \& Pr. 02 . However, the data will lost when power OFF.
That means, changing these parameters will not cause any Read/Write operation of EAROM. By this method, the life of EAROM memory chip is extended.
This function is important when $\mathrm{ACC} / \mathrm{DEC}$ rate need changing very often.
Pr. 13 TEMPERARY Desired Position Increment-1 (High)
Pr. 14 TEMPERARY Desired Position Increment-2 (Low)
Similar to Pr. 22 \& Pr.23. After inverter power ON, changing this parameter has the same effect as changing Pr. 22 \& Pr. $23 . \quad$ However, the data will lost when power OFF.
That means, changing these parameters will not cause any Read/Write operation of EAROM. By this method, the life of EAROM memory chip is extended.
This function is important when Desired Position Increment need changing very often.
Pr. 15 MAXIMUM SPEED LIMIT
Defines maximum allowable running speed of motor.
Pr. 16 Reserve
Pr. 17 INTERNAL MEMORY SELECT
Pr. 18 INTERNAL MEMORY DATA
Besides the standard 100 parameters, there still exist many other important data in the internal memory of PDVip inverter . And, very often, it is necessary for the user to check the internal memory. Therefore, Pr. 17 and Pr. 18 are designed for monitoring the internal memory when necessary. Use Pr. 17 select the address location of the desire memory; then Pr. 18 will show the content of that specified memory.
The range of $\operatorname{Pr} .17$ is $0 \sim 255$, and the value of $\operatorname{Pr} .18$ is expressed in hexadecimal form.
Ex. Set Pr. $17=0$, then check Pr. 18 will show the revision of the DSP chip.
Pr. 19 JOG SPEED(Refer to Section 8.2~8.5 \& 12)
This parameter determines the running speed when JOG speed is required.
Pr. 20 JOG ACC/DEC
Defines the acceleration and deceleration rate when JOG command is in execution.
Pr. 21 SPD1 SPEED SET(Refer to Section 8.2~8.5 \& 12)
This parameter determines the running speed when SPD1 speed is required.
Pr. 22 DPI-1(High) (DPI : Desired Position Increment)
Pr. 23 DPI-1(Low)
The maximum possible increment value is 99999999 , which is 8 digits long.
Therefore, DPI-1 value requires two parameters
DPI-1 = 10000*DPI-1(High) + DPI-1(Low)
Two methods can start the DPI-1 incremental motion control :
a. Software Control

Set Pr.03=1
b. Hardware Control

Set DIx_select=41, and activate DIx.
Pr. 24 SPD2 SPEED SET(Refer to Section 8.2~8.5 \& 12)
This parameter determines the running speed when SPD2 speed is required.

Pr. 25 DPI-2(High)
Pr. 26 DPI-2(Low)
The maximum possible increment value is 99999999 , which is 8 digits long.
Therefore, DPI- 2 value requires two parameters
DPI-2 $=10000$ *DPI-2(High) + DPI-2(Low)
Two methods can start the DPI-2 incremental motion control :
a. Software Control Set Pr. $03=2$
b. Hardware Control Set DIx_select=42, and activate DIx.
Pr. 27 SPD3 SPEED SET(Refer to Section 8.2~8.5 \& 12)
This parameter determines the running speed when SPD3 speed is required.
Pr. 28 DPI-3(High)
Pr. 29 DPI-3(Low)
The maximum possible increment value is 99999999 , which is 8 digits long.
Therefore, DPI- 3 value requires two parameters DPI-3 $=10000 *$ DPI-3(High) + DPI-3(Low)
Two methods can start the DPI-3 incremental motion control :
a. Software Control Set Pr. $03=3$
b. Hardware Control Set DIx_select=43, and activate DIx.

Pr. 30 FREE RUN STOP

If Pr. $30=0$, when stop, inverter gradually decreasing its output frequency.
If $\operatorname{Pr} .30=1$, when stop, inverter disables output immediately, the motor free run.
Pr. 31 REVERSE INHIBIT
If $\operatorname{Pr} .31=0$, Inverter may run in both direction.
If $\operatorname{Pr} .31=1$, Reverse Run is inhibited.
Pr. 32 S_CURVE TIME CONSTANT
This parameter determines the time constant of the S-Curve.
Pr. 33 DISCHARGE_CONTROL
If Pr. $33=0$, Discharge circuit is Disabled.
If $\operatorname{Pr} .33=1$, Discharge circuit is Enabled.
The discharge transistor will ON if the following conditions are met :
a. Inverter is Running, and
b. Inverter has no alarm, and
c. Inverter checks the VDC $>117 \%$, and
no matter the inverter is deceleration or not.
Pr. 34 UP/OP RESTART_ENABLE(Refer to Section 11)
If Pr. $34=1$, Inverter will restart automatically, after power come back normal.
Pr. 35 STALL_LEVEL
This parameter defines the current limit level(\%) while STALL process.
Pr. 36 POWER FAIL STOP TIME (Refer to Section 11)
This parameter defines the minimum stop time while executing BASE BLOCK function or when UP/OP
ALARM occurs.
Pr. 37 AM SELECT(Refer to Section 10)
Select desired variables to appear at analog output terminal.
Pr. 38 AM GAIN(Refer to Section 10)
Select desired gain ratio for analog output terminal.
Pr. 39 CONTROL COMMAND SELECT(Refer to Section 6)
This parameter determines the type of RUN/STOP control method.
Pr. 40 SET SPEED INPUT SELECT(Refer to Section 7)
This parameter defines the source and type for determining the running frequency.
Pr. 41 DI1 FUNCTION SELECT(Refer to Section 8)
Defines the function for input terminal DI1.
Pr. 42 DI2 FUNCTION SELECT(Refer to Section 8)
Defines the function for input terminal DI2.
Pr. 43 DI3 FUNCTION SELECT(Refer to Section 8)
Defines the function for input terminal DI3.

Pr. 44 DI4 FUNCTION SELECT(Refer to Section 8)

 Defines the function for input terminal DI4.Pr. 45 DO1 FUNCTION SELECT(Refer to Section 9) Defines the function for output terminal DO1.
Pr. 46 DO2 FUNCTION SELECT(Refer to Section 9)
Defines the function for output terminal DO2.
Pr. 47 RELAY FUNCTION SELECT(Refer to Section 9)
Defines the function for output RELAY terminal RY1\&RY2.
Pr. 48 IRMS DETECTOR THRESHOLD LEVEL(Refer to Section 9.13)
This parameter is used to define the threshold level for Current Over Detector module.
Pr. 49 SPEED DETECT LEVEL(Refer to Section 9.2)
Pr. 50 SPEED DETECT TOLERANCE(Refer to Section 9.2)

Pr. 49 and Pr. 50 are used for SPE, SPNE, SPO and
SPNO output functions.
Pr. 51 THERMAL RELAY TRIP TIME
This parameter defines the OVER LOAD trip time of the INTERNAL THERMAL RELAY.
If $\operatorname{Pr} .51=0$, the THERMAL RELAY function is disabled.

Pr. 78 MOTOR RATING

If the inverter's rating capacity is larger than the motor in use, this parameter can be adjusted to protect the motor. This parameter is defined as the percentage level of the inverter rating.

Pr. 52 PITCH

This parameter defines the ball screw pitch for one motor revolution.
Pr. 53 Reserved
Pr. 54 IRMS_SELECT
If Pr. $54=0$, $\operatorname{IRMS}(\operatorname{Pr} .61)$ is expressed in AMPERE
If $\operatorname{Pr} .54=1$, $\operatorname{IRMS}(\operatorname{Pr} .61)$ is expressed in PERCENTAGE of inverter rated current.
Pr. 55 A/D CONVERTER CHANNEL SELECT(Refer to Section 13.3)
Pr. 56 A/D CONVERSION DATA(Refer to Section 13.3)
Pr. 57 HZ(Refer to Section 13.1)
Pr. 58 RPM(Refer to Section 13.1)
Pr. 59 VDC(Refer to Section 13.1)
Pr. 60 Reserved
Pr. 61 IRMS(Refer to Section 13.1)
Pr. 62 POSITION COUNTER(High)
Pr. 63 POSITION COUNTER(Low)
When the inverter under RUN mode, its internal 32-bits couter will start couting feedback pulses from motor's
encoder.
The higher 16 bits are transferred to Pr. 62 ; and the lower 16 bits are transferred to Pr. 63.
In order to prevent from reading error, please set Pr. $03=7$ before sequentially reading these two parameters.
Pr. 64 POSITION ERROR
POSITION ERROR is the difference between desired position and actual position .
Refer to Pr. 69 and Pr. 70 .
Pr. 65 FIELD CURRENT(\%)
Pr. 66 APR Pgain
Pr. 67 APR Igain
Pr. 68 APR Dgain
Parameter Pr.66, Pr. 67 and Pr. 68 are general P-I-D gain constants for position loop controller.
Note : APR -- Automatic Position Regulator

Pr. 69 IN POSITION RANGE

This parameter defines a reference for POSITION_ERROR.
If
$|P O S I T I O N \quad E R R O R(\operatorname{Pr} .64)| \leq I N _P O S I T I O N _R A N G E$ (Pr.69)
then
IN_POSITION_FALG(BIT-5 of Pr.04) is set.
Pr. 70 POSITION ERROR LIMIT
This parameter defines POSITION_ERROR_LIMIT for ERROR_OVER flag.
If
\mid POSITION _ERROR(Pr.64)|>POSITION _ERROR_LIMIT (Pr.70)
then
ERROR_OVER_FLAF(Bit-6 of Pr.04) is set.
Pr. 71 TIMER TIME(Refer to Section 8.7)
Pr. 72 ACR Pgain
Pr. 73 ACR Igain
Parameter Pr. 72 and Pr. 73 are general P-I gain constants for current loop controller.
Note : ACR -- Automatic Current Regulator
Pr. 74 CONTROL TYPE SELECT
This parameter determines the PDVip inverter's operation mode :
Pr.74=0 : Speed control mode
Under this mode, the speed is accurately controlled.
Low speed range extends to ZERO RPM with rated holding torque.
Pr.74=1: Reserved
Pr.74=2 : Auto Positioning mode
There are three presettable Desired Position Incremental parameter pairs - DPI-1, DPI-2 and DPI-3,
available for the user to achieve economical position control.
According to the desired speed set, and ACC/DEC rate, the inverter will generate a trapezoidal velocity profile automaticallly, and stop the motor just in point.
Refer to Pr.22/23, Pr.25/26, Pr.28/29, and necessary digital input/output functions.
Pr.74=3: Tracking mode
This operation mode accept three types of pulse input command from CON-8.
It is very useful for applications that needs exact speed/position tracking between motors.
Refer to Pr. 08.
Pr. 75 Reserved
Pr. 76 ASR Pgain
Pr. 77 ASR Igain
Parameter Pr. 76 and Pr. 77 are general P-I gain constants for speed loop controller.
Note: ASR -- Automatic Speed Regulator
Pr. 78 MOTOR RATING
Refer to the description of Pr. 51.
Pr. 79 FULL LOAD SPEED(RPM)
Pr. 80 TORQUE LIMIT-1
Pr. 81 TORQUE LIMIT-2
Torque limit-1 and Torque Limit-2 are identical for limiting the maximum torque of the motor while running. If Torque Limit-n $=0 \sim 150$, Standard torque limit, in percentage.
If Torque Limit-n $=151 \sim 190$, the maximum torque is relate to the AI2 input.

TORQUE LIMIT(\%)

TORQUE LIMIT(\%)

TORQUE LIMIT(\%)

TORQUE LIMIT(\%)

Note : For V7.20, Pr. $81 \leq 150$ and Pr. $80 \leq 190$
Pr. 82 MOTOR \& PG SELECT
This parameter must set according to the motor and encoder specification.

Pr.82	Pole no.	Encoder
1	2	128
2	2	256
3	2	512
4	2	1024
5	4	256
6	4	512
7	4	1024
8	4	2048
9	6	384
10	6	768
11	6	1536
12	6	3072
13	8	512
14	8	1024
15	8	2048
16	8	4096
17	12	768
18	12	1536
19	12	3072
20	12	6144

Pr. 83 IGBE GUARD TIME

This parameter defines the guard time for preventing IGBT short between upper and lower arm.
Only factory can modify this parameter. Consult factory if modification is necessary.
Pr. 84 LINE_VOLTAGE
This parameter defines the normal working voltage of the inverter.
According to this parameter, the inverter calculates all voltage dependent values.
a. OP Trip Voltage $($ VDC $)=1.414 * \operatorname{Pr} .84 * 130 \%$
b. UP trip Voltage $(\mathrm{VDC})=1.414$ * Pr. $84 * 70 \%$
c. OP Recover Voltage $($ VDC $)=1.414$ * Pr. $84 * 120 \%$
d. UP Recover Voltage (VDC) $=1.414$ * Pr. 84 * 80%
e. Contact On Voltage $($ VDC $)=1.414 * \operatorname{Pr} .84 * 69 \%$
f. Contact Off Voltage (VDC) $=1.414$ * Pr. $84 * 65 \%$

Note : The "Contact" means the device used to BY-PASS the Charging Resistor.
It may be a RELAY or a SCR instead.
g. Discharge Start Voltage $(\mathrm{VDC})=1.414 * \operatorname{Pr} .84 * 117 \%$

Pr. 85 INVERTER RATED CURRENT
This parameter defines the rated output current of the inverter.
Pr. 86 IRMS ADJUST
This parameter is used to adjust the IRMS data reading.
Pr. 87 VDC ADJUST
This parameter is used to adjust the VDC data reading.
Pr. 88 TORQUE CONTROL \& FILTER
This parameter is composed by four digits : Pr. $88=$ D3-D2-D1-D0
D0 : Speed FeedBack Filter
D1: Torque Command Filter
D2 : Torque Control Type

D2 $=1$

D2 $=2$

D2 $=3$

D3 : reserved

Pr. 89 AI1_LOW
This parameter is used to record the A / D converter data when "AI1" input terminal is connected to "ACOM" terminal. (JP1 select +10 V)
Pr. 90 AI1_HIGH
This parameter is used to record the A / D converter data when "AI1" input terminal is connected to " +10 V " voltage source.(JP1 select +10 V)
Pr. 91 AI2_LOW
This parameter is used to record the A/D converter data when "AI2" input terminal is connected to "ACOM" terminal.(JP2 select +5 V)
Pr. 92 AI2_HIGH
This parameter is used to record the A / D converter data when "AI2" input terminal is connected to " +5 V " terminal.(JP2 select +5 V)
Pr. 93 UNIT_NUMBER
This parameter is used to assign the ADDRESS NUMBER of this INVERTER UNIT while controlled by master computer through RS485 interface.
Pr. 94 PARAMETER RELOAD(Refer to Section 5.3)
Pr. 95 MEMORY PROTECT(Refer to Section 5.2)
Pr. 96 FACTORY WRITE ENABLE(Refer to Section 5.2)
Pr. 97 VERSION
This parameter indicate the software revision of this inverter.
Pr. 98 MONITOR(I) (Refer to Section 13)
Pr. 99 MONITOR(HZ) (Refer to Section 13)

6. Selection of RUN/STOP/FWD/REV control

command

Before start running the inverter, the most important step is to select the Control Command Source. You can choose whether the control command will come from panel or terminal.
If the control command should come from terminal, then the two input terminals RUN and REV are used for controlling the inverter.
These two input terminals are inactive when left open and will be active when connected to DCOM terminal. Parameter Pr. 39 is used to select the source of Control Command.

```
Pr. }39\mathrm{ -- CMD SELECT
if Pr.39=0
```

The RUN and REV terminals are disabled.
Control Command will come from the keypad panel .
Just push FWD key, the inverter will run forward direction.
Push REV key, the inverter will run forward direction.
if \quad Pr. $39=1$
The RUN terminal will start the inverter running, and REV terminal controls the running direction.
if $\quad \operatorname{Pr} .39=2$
The RUN terminal is equivalent to FORWARD-RUN.
The REV terminal is equivalent to REVERSE-RUN.
Note : Refer to Sec. 7 to determine the running frequency.

Pr.39	"RUN" Terminal	"REV" Terminal	FUNCTION
0	don't care	don't care	Command from PANEL
	OFF	don't care	STOP
1	OFF	don't care	STOP
	ON	OFF	FORWARD RUN
	ON	ON	REVERSE RUN
	OFF	OFF	STOP
2	OFF	ON	REVERSE RUN
	ON	don't care	FORWARD RUN

7. Selection of Set Frequency input source 7.1 SELECTION CHART

NOTE:IS FUNCTION BLOCK

IS HARDWARE SELECT SETTING or SOFTWARE SELECT SWITCH

7.2 SPEED SOURCE DESCRIPTION

This section describes how to select desired input Frequency Source.
Parameter Pr.40, is the speed input source selection parameter.
The speed input sources may come from Panel, Memory, Analog input, Up/Down counter, or the combinations of the above sources.
Please refer to the following table first.

Pr. 40	JP1	JP2	SPEED source	DIRECTION Source
0	don't care	don't care	Value in Pr. 00	From Command
1	$+10 \mathrm{~V}$	don't care	AI1 Uni-directional	From Command
2	don't care	+5 V (or 20 mA)	AI2 Uni-directional	From Command
3	don't care	don't care	Set value from Panel	From Command
4	+/-5V	don't care	AI1 Bi-directional	By AI1 input value
5	don't care	+5 V (or 20 mA)	AI2 Bi-directional	By AI2 input value
6	don't care	don't care	By U/D counter	From Command
7	Similar to Pr. $40=6$, but will preload U/D counter from Pr. 00 after RESET.			
8	Similar to Pr. $40=3$, with PRELOAD from \& AUTO WRITE to Pr. 00			
9	Similar to Pr.40=4, but will not STOP while desired frequency is low			
10	Similar to Pr.40=5, but will not STOP while desired frequency is low			
11	Similar to Pr. $40=6$, While running will only down to Low Limit.			
12	Frequency Set = AI1 * AI2			
13	Frequency Set = AI2 + AI1			
14	Reserve			
15	Reserve			
16	Reserve			
17	Similar to Pr.40=1, With Minimum = Low limit			
18	Similar to Pr.40=2, With Minimum = Low limit			
19	Slimilar to Pr. $40=11$, With Auto Reload from and Auto Write to Pr. 00			
20	Reverse to Pr. $40=18,+5 \mathrm{~V}$ (or 20mA)---> Lower , 0V---> Upper Frequency			
21	Frequency Set = Panel Set * AI2 (V4.87~)			
22	Frequency Set = Panel Set + AI1 (V4.87~)			

Note: JP1 is used for changing the configuration of analog input AI1.
It may select $+/-5 \mathrm{~V}$ (default) or $0 \sim+10 \mathrm{~V}$.
JP2 is used for changing the configuration of analog input AI2.
It may select $0 \sim+5 \mathrm{~V}$ (default) or $0 \sim 20 \mathrm{~mA}$.

7.2.0 Pr. $40=0$, Speed input come from Pr. 00

Parameter Pr. 00 is the MAIN_SPEED_SET parameter stored in EAROM memory.
The value once written into Pr. 00 will never be altered, unless you re-write a new value again.
In this mode, the Hz value stored in Pr .00 will be used to determine the output frequency of the inverter while running.
The direction of the output phase sequence must be determined by control command.
It is possible to protect the value in Pr. 00 by settint $\operatorname{Pr} .95=1$.
Note : Changing the content in Pr. 00 will immediately change the output frequency even if the inverter is running.
7.2.1 Pr.40 = 1, Speed input come from AI1

In this mode, the voltage signal fed into AI1 terminal will be used to determine the output frequency of the inverter while running.
The direction of the output phase sequence must be determined by control command. If the input signal reaches maximum level, the set frequency is equal to Pr.15(UPPER LIMIT). If the desired set frequency is lower than Pr.16(LOWER LIMIT), the inverter will stop.
Note: Set jumper JP1 to match with the input voltage range.
If set to +10 V position, input range is $0 \mathrm{~V} \sim+10 \mathrm{~V}$.
If set to $+/-5 \mathrm{~V}$ position, input range is $-5 \mathrm{~V} \sim+5 \mathrm{~V}$. (Default)
If necessary, use Pr. 89 and $\operatorname{Pr} .90$ to modify the input range .

7.2.2 Pr.40=2, Speed input come from AI2

In this mode, the voltage signal fed into AI2 terminal will be used to determine the output frequency of the inverter while running.
The direction of the output phase sequence must be determined by control command.
If the input signal reaches maximum level, the set frequency is equal to Pr.15(UPPER LIMIT).
If the desired set frequency is lower than Pr.16(LOWER LIMIT), the inverter will stop.
Note : Set jumper JP2 to match with the input signal type and range.
If set to +5 V position, input signal type and range is $0 \mathrm{~V} \sim+5 \mathrm{~V}$. (Default)
If set to 20 mA position, input signal type and range is $0 \mathrm{~mA} \sim 20 \mathrm{~mA}$.
If necessary, use Pr. 91 and $\operatorname{Pr} .92$ to modify the input range .

7.2.3 Pr. $\mathbf{4 0}=\mathbf{3}$, Speed input come from Key-pad setting For LOCAL panel, change to CTL(control) Mode by push CTL/MON key.(If Hz or I lamp is on, push again until they are all off.) Then, push UP or DOWN key to modify the desired set frequency.
For REMOTE panel, chagne to CTL Mode by push CTL key. Then, modify the desired set frequency by pushing the Number keys followed by FWD or REV key. Or, modify it by UP and DOWN keys just like LOCAL panel.
The direction of the output phase sequence must be determined by control command.
7.2.4 Pr. $40=4$, Speed input come from AI1 with Bi-direction control In this mode , the voltage signal fed into AI1 terminal will be used to determine the output frequency of the inverter while running.
The direction of the output phase sequence is determined by the input signal level.
If the input signal is positive maximum level, the set frequency is equal to Pr.15(UPPER LIMIT)
in forward direction; and if the input signal is most negative(or zero, depend on JP1), the set frequency is equal to Pr. 15 in reverse direction.
If the desired set frequency is lower than Pr.16(LOWER LIMIT), the inverter will stop.
Note : Set jumper JP1 to match with the input voltage range.
If set to +10 V position, input range is $0 \mathrm{~V} \sim+10 \mathrm{~V}$.
If set to $+/-5 \mathrm{~V}$ position, input range is $-5 \mathrm{~V} \sim+5 \mathrm{~V}$. (Default)
If necessary, use Pr. 89 and Pr. 90 to modify the input range .

JP1 set to $+/-5 \mathrm{~V}$

JP1 set to +10 V
7.2.5 Pr. $\mathbf{4 0}=\mathbf{5}$, Speed input come from AI2 with Bi-direction control In this mode, the voltage signal fed into AI2 terminal will be used to determine the output frequency of the inverter while running.
The direction of the output phase sequence is determined by the input signal level.
If the input signal is positive maximum level, the set frequency is equal to Pr.15(UPPER LIMIT)
in forward direction; and if the input signal is zero, the set frequency is equal to Pr. 15 in reverse direction.
If the desired set frequency is lower than Pr.16(LOWER LIMIT), the inverter will stop.
Note : Set jumper JP2 to match with the input signal type and range.
If set to +5 V position, input signal type and range is $0 \mathrm{~V} \sim+5 \mathrm{~V}$.(Default)
If set to 20 mA position, input signal type and range is $0 \mathrm{~mA} \sim 20 \mathrm{~mA}$.
If necessary, use Pr. 91 and Pr. 92 to modify the input range .

JP 2 set to +5 V

JP2 set to 20 mA
7.2.6 Pr. $40=6$, Speed input come from Internal Up/Down Counter
7.2.7 Pr. $40=7$, Speed input come from Internal Up/Down Counter with Preload from Pr. 00

Functional Block Diagram of the Internal UP/DOWN Counter
*1. If $\operatorname{Pr} .40=6,7,11$, or 19 , the counter output is used to determine the output frequency.
*2. If $\operatorname{Pr} .40=7$ or 19, Data in Pr. 00 will preload into the counter when Power On or after Reset.
*3. If Pr. $40=19$, after $\mathrm{Up} /$ Down execution, the content of counter will write into Pr. 00 automatically.
*4. These signals come from Digital Input(DIx) terminal. Refer to Sec. 8 for detail description .

7.2.8 Pr. $40=8$, Similar to mode 3, with Preload from Pr. 00 (and Auto Write to Pr.00,V4.69~)

This function is similar to $\operatorname{Pr} .40=3$, with only two differences :
a. When Power On or after Reset, the data in Pr.oo will preload into set frequency buffer.
b. For CPU version V4.69~, when using LOCAL panel, the buffer value will write back into Pr. 00 automatically.
7.2.9 Pr. $40=9$, Similar to mode 4 , with minimum running speed

In this mode, the voltage signal fed into AIl terminal will be used to determine the output frequency of the inverter while running.
The direction of the output phase sequence is determined by the input signal level.
If the input signal is positive maximum level, the set frequency is equal to Pr.15(UPPER LIMIT)
in forward direction; and if the input signal is most negative(or zero, depend on JP1), the set frequency is equal to Pr. 15 in reverse direction.
While the desired output frequency is lower than Pr.16(LOWER LIMIT), the actual output frequency will maintain at the lower frequency limit.
Note : Set jumper JP1 to match with the input voltage range.
If set to +10 V position, input range is $0 \mathrm{~V} \sim+10 \mathrm{~V}$.
If set to $+/-5 \mathrm{~V}$ position, input range is $-5 \mathrm{~V} \sim+5 \mathrm{~V}$. (Default)
If necessary, use Pr. 89 and $\operatorname{Pr} .90$ to modify the input range .

JP1 set to $+/-5 \mathrm{~V}$

JP1 set to +10 V
7.2.10 Pr. $\mathbf{4 0}=\mathbf{1 0}$, Similar to mode 5 , with minimum running speed

In this mode, the voltage signal fed into AI2 terminal will be used to determine the output frequency of the inverter while running.
The direction of the output phase sequence is determined by the input signal level. If the input signal is positive maximum level, the set frequency is equal to Pr.15(UPPER LIMIT) in forward direction; and if the input signal is zero, the set frequency is equal to Pr. 15 in reverse direction. While the desired output frequency is lower than Pr.16(LOWER LIMIT), the actual output frequency will maintain at the lower frequency limit.
Note : Set jumper JP2 to match with the input signal type and range.
If set to +5 V position, input signal type and range is $0 \mathrm{~V} \sim+5 \mathrm{~V}$.(Default)
If set to 20 mA position, input signal type and range is $0 \mathrm{~mA} \sim 20 \mathrm{~mA}$.
If necessary, use Pr. 91 and Pr. 92 to modify the input range .

JP2 set to +5 V

JP2 set to 20 mA
7.2.11 Pr. $40=11$, Similar to mode 6 , with minimum running speed(V4.67~)

This function is very similar to mode-6, except :
After Up/Down execution, the minimum frequency will only go Down to Pr.16(Lower Limit).
7.2.12 $\operatorname{Pr} .40=\mathbf{1 2}$, Speed input is the combination of AI1 * AI2(V4.68~)

In this mode, the desired set frequency is the combination of AI1 and AI2.
Analog signal from AI1 is selected to be the master set frequency; and signal from AI2 is the proportional rate input.
When signal level of AI2 is maximum, the rate equal 100%; if AI2 is minimum, the rate is 0%.

Typical application is as follows :

7.2.13 $\operatorname{Pr} .40=\mathbf{1 3}$, Speed input is the combination of AI2 + AI1(V4.68~)

In this mode, the desired set frequency is the combination of AI1 and AI2.
Analog signal from AI2 is selected to be the major set frequency; and signal from AI1 is the auxiliary input. Set JP1 at $+/-5 \mathrm{~V}$ position, if the signal level of AI1 is positive, then the output frequency will increase accordingly; and if AI1 is negative, then the output frequency will decrease.
Typical application is as follows :

7.2.14 Pr. $40=14$, Reserved for factory use
7.2.15 Pr. $40=15$, Reserved for factory use
7.2.16 Pr. $40=16$, Reserved for factory use
7.2.17 Pr. $40=17$, Similar to mode 1, with minimum running speed(V4.77~)

In this mode, the voltage signal fed into AI1 terminal will be used to determine the output frequency of the inverter while running.
The direction of the output phase sequence must be determined by control command.
If the input signal reaches maximum level, the set frequency is equal to Pr.15(UPPER LIMIT).
While the desired output frequency is lower than Pr.16(LOWER LIMIT), the actual output frequency will maintain at the lower frequency limit .
Note : Set jumper JP1 to match with the input voltage range.
If set to +10 V position, input range is $0 \mathrm{~V} \sim+10 \mathrm{~V}$.
If set to $+/-5 \mathrm{~V}$ position, input range is $-5 \mathrm{~V} \sim+5 \mathrm{~V}$. (Default)
If necessary, use Pr. 89 and Pr. 90 to modify the input range .

JP1 set to +10 V

JP1 set to $+/-5 \mathrm{~V}$
7.2.18 Pr. $40=18$, Similar to mode 2, with minimum running speed(V4.77~)

In this mode, the voltage signal fed into AI2 terminal will be used to determine the output frequency of the inverter while running.
The direction of the output phase sequence must be determined by control command.
If the input signal reaches maximum level, the set frequency is equal to Pr.15(UPPER LIMIT).
While the desired output frequency is lower than Pr.16(LOWER LIMIT), the actual output frequency will maintain at the lower frequency limit .
Note : Set jumper JP2 to match with the input signal type and range.
If set to +5 V position, input signal type and range is $0 \mathrm{~V} \sim+5 \mathrm{~V}$.(Default)
If set to 20 mA position, input signal type and range is $0 \mathrm{~mA} \sim \mathbf{2 0} \mathrm{~mA}$.
If necessary, use Pr. 91 and Pr. 92 to modify the input range .

7.2.19 Pr. $40=19$, Similar to mode 11, with Preload and Auto Write(V4.77~)

Refer to Sec.7.2.6, Sec.7.2.7.
Note : Using this mode, the Computer Control function will be affected.

7.2.20 Pr. $\mathbf{4 0}=\mathbf{2 0}$, Similar to mode 18, with Reverse Slope(V4.80~)

In this mode, the voltage signal fed into AI2 terminal will be used to determine the output frequency of the inverter while running.
The direction of the output phase sequence must be determined by control command.
If the input signal reaches maximum level, the set frequency is equal to Pr.16(LOWER LIMIT).
If the input signal is zero, the set frequency is equal to Pr.15(UPPER LIMIT).
Note : Set jumper JP2 to match with the input signal type and range.
If set to +5 V position, input signal type and range is $0 \mathrm{~V} \sim+5 \mathrm{~V}$.(Default)
If set to 20 mA position, input signal type and range is $0 \mathrm{~mA} \sim 20 \mathrm{~mA}$.
If necessary, use Pr. 91 and Pr. 92 to modify the input range .

JP2 set to +5 V
7.2.21 Pr.40=21(V4.87~), Set frequency = Panel set frequency * AI2

This mode is similar to mode-3.
However, the output frequency will be modified by the input signal from AI2.
AI2 is treated as percentage input. +5 V is 100%, and 0 V equal to 0%.
This function is useful when multiple inverters are controlled by master computer.

7.2.22 Pr. $40=22$ (V4.87~), Set frequency $=$ Panel set frequency + AI1

This mode is similar to mode-3.
However, the output frequency will be modified by the input signal from AI1.
Set JP1 to $+/-5 \mathrm{~V}$ position. If AI1 >0, the ourput frequency will increase; and if AI1<0, the output frequency will decrease.
This function is useful when multiple inverters are controlled by master computer.

Master Speed Set by Computer(from serial port)

8. Selection of Digital input function

The terminals DI1, DI2, DI3, \& DI4 are multi-functioned Digital Input terminals.
【Note】 All the DIx terminals are scanned once every 2.5 ms .
These four terminals are exactly identical in its hardware/software configurations.
When left open, they are inactive . And will become active when connected to DCOM.
Each input terminal can be configured individually by corresponding DIx_SELECT parameters.
The four DIx_SELECT parameters are :
Pr. 41 -- DI1_SELECT, used for DI1
Pr. 42 -- DI2_SELECT, used for DI2
Pr. 43 -- DI3_SELECT , used for DI3
Pr. 44 -- DI4_SELECT , used for DI4
Any digital input can select one of the following special functions individually.

Pr.41,42,43,44	FUNCTION	COMMENT
0	NULL	NO FUNCTION
1	EMS	EMERGENCY STOP
2	SPD3	SPEED SET
3	SPD2	SPEED SET
4	SPD1	SPEED SET
5	JOG	JOG SPEED SET
6	OH	OVER HEAT ERROR, (if input closed)
7	TMIA	TIMER INPUT TYPE A
8	ON_BB	BASE BLOCK if DIx is ON
9	FJR	FORWARD JOG RUN
10	RJR	REVERSE JOG RUN
11	TMIB	TIMER INPUT TYPE B
12	SAVE	SAVE ENERGY
13	UP(fix rate)	INCREASE UP/DOWN COUNTER(fix rate)
14	DOWN(fix rate)	DECREASE UP/ DOWN COUNTER(fix rate)
15	U/D CLEAR	CLEAR UP/DOWN COUNTER
16	U/D LOAD	LOAD Pr. 15 to UP/DOWN COUNTER
17	U/D HOLD	HOLD "Output HZ" to UP/DOWN COUNTER
18	OFF_BB	BASE BLOCK if DIx is OFF
19	UP	INCREASE UP/DOWN COUNTER
20	DOWN	DECREASE UP/DOWN COUNTER
21	ALARM CLEAR	CLEAR ALARM WHEN ALARM OCCUR
22	SET1(FF1)	SET input of Flip/Flop-1
23	CLR1(FF1)	CLEAR input of Flip/Flop-1
24	SET2(FF2)	SET input of Flip/Flop-2
25	CLR2(FF2)	CLEAR input of Flip/Flop-2
26	SET(FF1\&FF2)	SET input to both FF1 \& FF2
27	CLR(FF1\&FF2)	CLEAR input to both FF1\& FF2
28	CLK Input	Input CLOCK to Timer/Counter Block
29	Reserve	
30	/OH	OVER HEAT ERROR, (if input open)
31	Normal/Auto SW	Change Over Switch for Normal or Auto Run

8.0 DIx_Select $=\mathbf{0}$, NULL function

The input terminal is disabled into inactive state when select NULL function.
8.1 DIx_Select = 1, EMS Emergency Stop function(Refer to Section 5.4, Pr.05~Pr.08)

While inverter running, if the input terminal is active, then inverter will start delivering DC voltage instead of AC
voltage to motor. The DC voltage level is assigned by Pr.06, and will remain a period of time determined by
Pr.07.
8.2 DIx_Select $=\mathbf{2}, \mathbf{S P D} 3$ (Also refer to Section 12)
8.3 DIx_Select = 3 , SPD2
8.4 DIx_Select $=\mathbf{4}$, SPD1
8.5 DIx_Select $=\mathbf{5}$, $\mathbf{J O G}$

In addition to Pr. 00 Main_Speed_Set, there are other four presettable speeds : JOG Speed, SPD1, SPD2, and SPD3.
The following table list the corresponding parameters :

PARAMETER	FUNCTION	COMMENT
Pr. 00	MAIN SPD SET	Main preset speed
Pr.01	MAIN SPD ACC	ACC rate for Main speed
Pr. 02	MAIN SPD DEC	DEC rate for Main speed
Pr.19	JOG FREQUENCY	Desired JOG Frequency
Pr.20	JOG ACC/DEC TIME	ACC/DEC rate when select JOG
Pr. 21	SPD1 FREQUENCY	Desire SPD1 Frequency
Pr.22	SPD1 ACC TIME	ACC rate when select SPD1
Pr.23	SPD1 DEC TIME	DEC rate when select SPD1
Pr. 24	SPD2 FREQUENCY	Desire SPD2 Frequency
Pr.25	SPD2 ACC TIME	ACC rate when select SPD2
Pr. 26	SPD2 DEC TIME	DEC rate when select SPD2
Pr.27	SPD3 FREQUENCY	Desire SPD3 Frequency
Pr. 28	SPD3 ACC TIME	ACC rate when select SPD3
Pr.29	SPD3 DEC TIME	DEC rate when select SPD3

While using REMOTE PANEL, it is possible to JOG-RUN the inverter through the "JOG", "FWD" \& "REV" keys. When applications use only LOCAL PANEL \& Terminals to control the inverter, only multi-function inputs DIx may serve the JOG function.

The priority level for multi-speed operation is :
JOG $>$ SPD1 $>$ SPD2 $>$ SPD3 $>$ NORMAL_SPEED_REQUEST.
NORMAL SPEED_REQUEST stands for the speed set from Pr.00, or Panel, or UP/DOWN counter, or AIx, according to the user's selection defined in Pr. 40 .
Normally the JOG, SPD1, SPD2, \& SPD3 functions must be combined with RUN Command.
Refer to DIx mode 9 and 10, for JOG run without RUN command.
When inverter selects JOG speed, the acceleration and deceleration rate is determined by Pr. 20 .
When inverter selects SPD1 speed, the acceleration and deceleration rate is determined by Pr.22,23 .
When inverter selects SPD2 speed, the acceleration and deceleration rate is determined by Pr.25,26 .
When inverter selects SPD3 speed, the acceleration and deceleration rate is determined by Pr.28,29.

8.6 DIx_Select $=\mathbf{6}, \mathbf{O H}($ Over Heat $)$ function (Also refer to Section 8.30)

When the input terminal is activated, the inverter will disable the output transistors, and show $\mathbf{O H}$ alarm message on the display.
Refer to mode-30, for complementary function.

8.7 DIx_Select $=7$, TMIA

Functional block diagram of Timer/Counter module

Note : When any of the four DIx digital inputs select mode-28, the Timer/Counter Module will be configured as Counter Module. Otherwise, it is configured as Timer Module.
When configured as a Timer, the Internal 0.1 Second time base signal is selected to be the clock input of the Timer/Counter Module.
If configured as a Counter, the DIx terminal which was assigned to mode- 28 will become the clock input of the Timer/Counter Module.

When digital input DIx is assigned to TMIA function, it serves as Input of the OFF-DELAY timer. User must assign a digital output DOx , which select TMOA function to serve as the output of this timer. And the timer time will be defined in Pr. 71 .
When the timer input TMIA is active, the timer output TMOA will be active immediately.
If the TMIA become inactive, the timer will start counting time. After waiting the specified time period of $\operatorname{Pr} .71$, then the TMOA become inactive too.

After V4.33, the timer block is modified to "Timer/Counter Block".
If counter function is desired, just select any digital input(DIx) to serve as the clock input terminal, and let the corresponding parameter(DIx_Select) set to 28.

Note :

The maximum clock input rate is 100 Hz .
There is only one internal Timer/Counter Block, you can use only one Timer/Counter, either TYPE A or TYPE B.
Output function /TMOA is available after V4.90~ .
8.8 DIx_Select $=\mathbf{8}, \mathbf{O N}-\mathbf{B B}$

When any DIx selecting this function, activate the input DIx will BLOCK the BASE signal to all transistors immediately in order to disable the inverter output. When the input is inactive again, the inverter will execute Speed Search process.
Refer to Sec.11, the special function for Speed Search process.
Also Refer to Sec.8.18 for complement function.
8.9 DIx_Select $=\mathbf{9}$, FJR

When selected DIx is active, it will force the inverter execute Forward-Jog-Run without RUN Command.
8.10 DIx_Select $=\mathbf{1 0}$, RJR

When selected DIx is active, it will force the inverter execute Reverse-Jog-Run without RUN Command.

When digital input DIx is assigned to TMIB function, it serves as
Input of the ON-DELAY timer. User must assign a digital output DOx , which select TMOB function to serve as the output of this timer. And the timer time will be defined in Pr. 71.
When the timer input TMIB is inactive, the timer output TMOB will be inactive too.
Until the input TMIB is active and continue active for a specified time period of Pr.71, then the TMOB will become active .
Output function /TMOB is available after V4.90~ .
8.12 DIx_Select = 12, SAVE-ENERGY

When any input select this function, the output voltage of inverter will decrease 20% when the input is active. It is useful when the load condition is light, decreasing the output voltage will increase the Power Factor and efficiency.
8.13 DIx_Select $=\mathbf{1 3}$, UP the content of UP/DOWN COUNTER
8.14 DIx_Select $=\mathbf{1 4}$, DOWN the content of UP/DOWN COUNTER
8.15 DIx_Select $=\mathbf{1 5}$, CLEAR the content of UP/DOWN COUNTER
8.16 DIx_Select $=\mathbf{1 6}$, LOAD the content of UP/DOWN COUNTER
8.17 DIx_Select $=\mathbf{1 7}$, HOLD output HZ to UP/DOWN COUNTER

Refer to Sec.7.6 Functinal Block Diagram of Internal UP/DOWN counter.
Note : These digital function may be selected as the input terminals when Pr.40=6, 7, 11, and 19, using the content of the UP/DOWN counter as the NORMAL_SPEED_REQUEST.
When activate the DIx terminal which is assigned as UP function(mode-13), the content of the internal UP/DOWN COUNTER will increase at $4.00 \mathrm{~Hz} /$ Second rate. Let the DIx inactive again will stop the UP function.
When activate the DIx terminal which is assigned as DOWN function(mode-14), the content of the internal UP/DOWN COUNTER will decrease at $4.00 \mathrm{~Hz} /$ Second rate. Let the DIx inactive again will stop the DOWN function.
Once activating the DIx terminal which is assigned as CLEAR function, the content of the internal UP/DOWN COUNTER will be cleared to zero immediately.
Once activating the DIx terminal which is assigned as LOAD function, the content of the internal UP/DOWN COUNTER will be set to the value of Pr.15(Upper Limit).
Once activating the DIx terminal which is assigned as HOLD function, the value of present output frequency will be loaded to the internal UP/DOWN COUNTER.
8.18 DIx_Select $=\mathbf{1 8}$, OFF-BB

When any DIx selecting this function, the input terminal must remain in activate state for normal operation. If the input terminal is left open to inactive state, it will BLOCK the BASE signal to all transistors immediately in order to disable the inverter output. When the input is active again, the inverter will execute Speed Search process.
Refer to Sec.11, the special function for Speed Search process.
Also Refer to Sec.8.8 for complement function.
8.19 DIx_Select $=19$, UP (V4.22~)

This function is similar to mode 13. However, the acceleration and deceleration rate will follow the time specified in Pr. 01 and Pr. 02 respectively.
8.20 DIx_Select $=\mathbf{2 0}$, DOWN(V4.22~)

This function is similar to mode 13. However, the acceleration and deceleration rate will follow the time specified in Pr. 01 and Pr. 02 respectively.
8.21 DIx_Select = 21, ALARM CLEAR(V4.18~)

If user choose this function, then activate the DIx terminal will reset the inverter only when alarm had occurred .
Note : The RST terminal is used to RESET the whole inverter no matter alarm occurred or not.
8.22 DIx_Select $=22$, SET Flip/Flop-1(V4.29~)
8.23 DIx_Select $=\mathbf{2 3}$, CLEAR Flip/Flop-1(V4.29~)
8.24 DIx_Select $=\mathbf{2 4}$, SET Flip/Flop-2(V4.29~)
8.25 DIx_Select $=\mathbf{2 5}$, CLEAR Flip/Flop-2(V4.29~)

Two general purpose Flip/Flops were built in for many application in order to minimize the necessary external components. Each Flip/Flop block has two SET inputs, two CLEAR inputs and two complementary outputs for free selection.
For example, Let DI1_Select(Pr.41) $=22$, select DI1 to be the SET input of FF1
DI2_Select(Pr.42) $=23$, select DI2 to be the CLEAR input of FF1 DO1_Select(Pr.45)=32, select DO1 to be the output Q of FF1
then, the combination of inputs DI1,DI2 and output DO1 will serve as a Latch Relay.
Momentary active signal apply to DI1 will cause DO1 enter active state. On the contrary, active signal apply to DI2 will cause DO1 back to inactive state again.
Note : Multiple assignment to the same input function is acceptable.

Functional Block diagram of Internal Flip/Flop Modules
Application example : Use DI1,DI2,DO1 as a LATCH RELAY.

8.26 DIx_Select = 26, SET both Flip/Flop-1\& Flip/Flop-2 (V4.29~)
8.27 DIx_Select = 27, CLEAR both Flip/Flop-1 \& Flip/Flop-2(V4.29~)

Refer to the Functional Block diagram of internal Flip/Flop Modules in Sec.8.22.
If digital input function select is DIx_select=26, then active input to DIx will SET both FF1 \& FF2.
If digital input function select is DIx_select=27, then active input to DIx will CLEAR both FF1 \& FF2.
8.28 DIx_Select $=28$, CLOCK input of Timer/Counter(V4.30~)

Refer to Sec.8.7, the Functional Block Diagram of the Internal Timer/Counter Module.
Note : When any of the four DIx terminals select this mode, the Timer/Counter Module will become Counter Module.
If this function is used, the Counter Module will advance one count when the input status of DIx change from inactive to active.
The maximum input clock rate is limited to 100 Transitions/Second .
8.29 DIx_Select $=29$, NULL function
8.30 DIx_Select $=\mathbf{3 0}$, $/ \mathbf{O H}$ function(V4.77~)

When any digital input terminal select this function, it must remain in active state for normal operation.
Else if the input is inactive, the inverter will disable the output transistors, and show $\mathbf{O H}$ alarm message on the display.
Refer to mode-6, for complementary function.
8.31 DIx_Select $=\mathbf{3 1}$, Normal/Auto Switch(V4.83~)

Refer to Sec.12, the description of AUTO RUN Function.
Parameter Pr. 72 determines the Auto Run Mode of the inverter.
This Digital Input function provides an easy way to change between Normal or Auto Run mode. When the selected DIx input is inactive, then the inverter running mode is determined by Pr. 72.
If the input is active, then it will force the inverter to run under Normal mode(equal to Pr.72=0).
Note : a. If Pr.72=0, selects Normal Run Mode.
b. The status change of the DIx will be effective only when the inverter is stop.

9. Selection of Digital output and Relay function

The DO1, DO2, RY1 and RY2 terminals are defined as multi-functional DIGITAL OUTPUTS.
The output circuit structure of DO1 \& DO2 are Transistor OPEN COLLECTOR outputs.
The RY1 and RY2 pair terminals are NORMAL OPEN(1a) contacts of the output RELAY .
The parameters for configuring the digital outputs are :
Pr. 45 -- DO1_SELECT , used for DO1 output function select
Pr. 46 -- DO2_SELECT , used for DO2 output function select
Pr. 47 -- RELAY_SELECT , used for Relay output function select
Each of the three digital outputs may select any of the following output functions :

Pr.45,46,47	FUNCTION	COMMENT
0	NULL	NO FUNCTION
1	NOT RUN	NOT RUNNING
2	SPE	SPEED EQUAL
3	SPNE	SPEED NOT EQUAL
4	ALM	ALARM
5	NALM	NO ALARM
6	BRAKING	UNDER BRAKING
7	RUNNING	UNDER RUNNING
8	SPO	SPEED OVER
9	SPNO	SPEED NOT OVER
10	SPA	SPEED ARRIVE
11	SPNA	SPEED NOT ARRIVE
12	DIR	OUTPUT DIRECTION
13	COD	CURRENT OVER DETECT
14	TMOA	TIMER OUTPUT TYPE A
15	SPZ	ZERO SPEED
16	SPNZ	NOT ZERO SPEED
17	STALLING	OUTPUT WHILE STALLING
18	SLOW ACC	ACC TIME EXTENSION
19	SLOW DEC	DEC TIME EXTENSION
20	TMOB	TIMER OUTPUT TYPE B
21	STEP1	AUTO RUNNING AT STEP 1
22	STEP2	AUTO RUNNING AT STEP 2
23	STEP3	AUTO RUNNING AT STEP 3
24	STEP4	AUTO RUNNING AT STEP 4
25	STEP5	AUTO RUNNING AT STEP 5
26	STEP6	AUTO RUNNING AT STEP 6
27	STEP7	AUTO RUNNING AT STEP 7
28	STEP8	AUTO RUNNING AT STEP 8
29	STEP9	AUTO RUNNING AT STEP 9
30	STEP10	AUTO RUNNING AT STEP 10
31	RESERVE	
32	Q1(FF1)	Output of Flip/Flop-1
33	/Q1(FF1)	Complement Output of FF1
34	Q2(FF2)	Output of Flip/Flop-2
35	/Q2(FF2)	Complement Output of FF2
36	RESERVE	
Pr.45,46,47	FUNCTION	COMMENT
37	RESERVE	
38	Output ON	The Output terminal always ON
39	Clock Output	Clock rate is 10 times output Hz
40	/TMOA	Complement of TMOA
41	/TMOB	Complement of TMOB

Note : When power on, or the inverter will executing INITIALIZE function, all of the outputs will go inactive for a short period of time about 1 second .

9.0 NULL function

The output status of DOx will always under inactive state when selecting this mode.
This function is complement function of Always $\mathbf{O N}$ function. Refer to Sec.9.38 .
This function is useful when the inverter is controlled by a master computer. The master computer can control these digital outputs for other peripheral, independent to the inverter operation.

9.1 NOT RUNNING function (complement of Sec.9.7)

The output status of DOx will be active when the inverter is under standby mode. Inverter under standby mode means the output transistors are all OFF .
If the inverter start running or under DC injection braking mode, the output status will be inactive.
9.2 SPE Speed Equal function
9.3 SPNE Speed Not Equal function(complement of Sec.9.2)

The output status of DOx will be active, if the output frequency is EQUAL to the preset frequency defined in Pr. 49 .
Definition of EQUAL means : Difference is within the allowable tolerance defined in Pr.50.

* Relative functions are SPO, SPZ, and SPA.
9.4 ALARM output function (complement of Sec.9.5)

The output status of DOx is normally inactive when the inverter detects no error.
If error occurs, the output will be active immediately .
9.5 NOT ALARM output function(complement of Sec.9.4)

The output status of DOx is normally active when the inverter detects no error.
If error occurs, the output will be inactive immediately.
9.6 BRAKING function(Refer to Section 5.4, Pr.05~Pr.08)

The output status of DOx will be active when the inverter is under DC injection braking mode.
9.7 RUNNING function (Refer to Section 5.4, Pr.05~Pr.08)

The output status of DOx will be inactive when the inverter is under standby mode.
Inverter under standby mode means the output transistors are all OFF .
If the inverter start running or under DC injection braking mode, the output status will be active.
9.8 SPO Speed Over function (Refer to Section 9.2)

The output status of DOx will be active, if the absolute value of output frequency is OVER the preset frequency defined in Pr. 49 .
9.9 SPNO Speed Not Over function(complement of Sec.9.8)
9.10 SPA Speed Arrive function(Refer to Section 9.2)

The output status of DOx will be active, if the output frequency is EQUAL to the Set frequency.
Definition of EQUAL means : Difference between output Hz and desired frequency is within the allowable tolerance defined in Pr. 50.
V4.89~, the SPA signal is always inactive if inverter is not running or is under DC injection braking.
On the contrary, the SPNA is always active if inverter is not running or is under DC injection braking.

9.11 SPNA Speed Not Arrive function(complement of Sec.9.10)

9.12 DIRECTION output function

The output status of DOx will be active, if the output frequency is in forward direction.
The output status of DOx will be inactive, if the output frequency is in reverse direction.
When inverter stop, the output status of DIx is active.
9.13 COD Current Over Dection function

To other protect \& trip circuit
Note: $\operatorname{Irms}=\operatorname{Sqrt}(\mathrm{Iu} * \mathrm{Iu}+\mathrm{Iv} * \mathrm{Iv}+\mathrm{Iw} * \mathrm{Iw})$

The output status of DOx will be active when the output current is greater than the threshold value defined in Pr. 48
And it will keep on active untill the output current falls under Pr.48-5\% .
The parameter Pr. 48 is expressed in $\%$ value of rated current.

9.14 TMOA Timer Output A-type function(Refer to Section 8.7)

Refer to the Functional block diagram of Timer/Counter module in Sec.8.7 and the related descriptions. 9.15 SPZ Speed Zero function (Refer to Section 9.2)

The output status of DOx will be active, if the output frequency is EQUAL to Zero.
Definition of EQUAL means : Difference is within the allowable tolerance defined in Pr.50.
9.16 SPNZ Speed Not Zero function(complement of Sec.9.15)

9.17 STALLING function

While inverter running, if the output current exceeds hardware limit or the level specified in Pr.35, the output frequency will decrease automatically to reduce the output current. Inverter running under such condition is called Stalling, and output status DOx will be active to indicate this situation.
9.18 SLOW ACC, indication of executing Acceleration Extension

While acceleration, if the output current exceeds hardware limit or the level specified in Pr.35, the inverter will decrease the acceleration rate automatically. In the mean time, the output status DOx will be active indicating the acceleration extension status.
9.19 SLOW DEC, indication of executing Deceleration Extension

While deceleration, if the capacitor voltage is over 115%, the inveter will decrease the deceleration rate automatically. In the mean time, the output status DOx will be active indicating the deceleration extension status.
9.20 TMOB Timer Output B-type function(Refer to Section 8.7)

Refer to the Functional block diagram of Timer/Counter module in Sec.8.7 and the related descriptions in Sec.8.11.
9.21 STEP1 output indicating Auto running at step1(Refer to Section 12.2)
9.22 STEP2 output indicating Auto running at step2(Refer to Section 12.2)
9.23 STEP3 output indicating Auto running at step3(Refer to Section 12.2)
9.24 STEP4 output indicating Auto running at step4(Refer to Section 12.2)
9.25 STEP5 output indicating Auto running at step5(Refer to Section 12.2)
9.26 STEP6 output indicating Auto running at step6(Refer to Section 12.2)
9.27 STEP7 output indicating Auto running at step7(Refer to Section 12.2)
9.28 STEP8 output indicating Auto running at step8(Refer to Section 12.2)
9.29 STEP9 output indicating Auto running at step9(Refer to Section 12.2)
9.30 STEP10 output indicating Auto running at step10(Refer to Section 12.2)
9.31 Reserve
9.32 Q1 output of Flip/Flop-1(Refer to Section 8.22)
9.33 /Q1 output of Flip/Flop-1(Refer to Section 8.22)
9.34 Q2 output of Flip/Flop-2(Refer to Section 8.22)
9.35 /Q2 output of Flip/Flop-2(Refer to Section 8.22)

Outputs of internal Flip/Flops.
9.36 Reserve
9.37 Reserve
9.38 Always ON(V4.71~)

The output status of DOx will always under active state when selecting this mode.
This function is complement function of NULL function. Refer to Sec.9.0 .
This function is useful when the inverter is controlled by a master computer. The master computer can control these digital outputs for other peripheral, independent to the inverter operation.
9.39 10X Hz Clock output(V4.88~)

When select this function, the output will become a digital clock signal output. The clock rate is equal to output frequency multiply by 10 .
【Note】This function is available only for DO1.
9.40 /TMOA Complement function of TMOA (V4.90~) Refer to 9.14 .
9.41 /TMOB Complement function of TMOB (V4.90~) Refer to 9.20 .

10. Selection of Analog output function

This section describes the definition of analog output voltage between "AM" \& "ACOM".
Refer to Section-1.2.2 for the internal circuit structure.
Relative parameter

$$
\begin{aligned}
& \text { Pr. } 37 \text {-- AM_SELECT } \\
& \text { Pr. } 38 \text {-- AM_GAIN }
\end{aligned}
$$

Auxiliary Analog Output Terminal "AM" is provided for analog meter display, or other applications requiring the analog output signal.
"AM_SELECT" is used to select desired signal which will output to AM terminal.
"AM_GAIN" is used to fine tuning the output voltage level.
User may select any of the four signals in the Table for output to the "AM" terminal.

Pr.37	AM Terminal Function	Output Ratio
0	HZ_Signal	Output Hz / (Pr.15)
1	IRMS_Signal	Output Irms / (2 * Pr.85)
2	VDC_Signal	Vcap / 1000 V
3	VOUT_Signal	Vout / (2 * Pr.84)
4	Reserve	
5	Internal UP/DOWN Counter(V4.82~)	Counter Value / (Pr.15)

Recommend interface circuit to external analog meter :

First use Pr. 37 to select desired output signal.
And let Pr. $38=250$.
Then adjust variable resistor for trimming to correct position.
If necessary, modify Pr. 38 for fine tuning.
Refer to Sec.1.2 for hardware structure.

11. Speed search and Base Block function

Pr. 79 to Pr. 82 are used to define the inverter's speed searching characteristics for restart process
The Speed Search function may be initiated by two methods :

1. By Digital Input to initiate the speed search process

LET DIx_SELECT=8, selects "Base Block" input function.
If terminal DIx is active, then the inverter will disable IGBT output causing the motor
FREE RUN to stop .
When DIx inactive again, the inverter will still remain in the BLOCK state for a period of time defined in the parameter BASE BLOCK TIME(Pr.36).
After the period of BASE BLOCK TIME, Then the restart process begins.
2. Power come back normal after UP/OP alarm to initiate the speed search process

LET Pr. 34 = 1, enables UP/OP restart function.
If "UP" or "OP" alarm appear while inverter running, Then the inverter will disable IGBT output causing the motor FREE RUN.
When Power come back to normal again, the inverter will still remain in the BLOCK state
for a period of time defined in the parameter BASE BLOCK TIME(Pr.36).
After the period of BASE BLOCK TIME, Then the restart process begins.

PARAMETER	FUNCTION	DESCRIPTION
Pr.79	RESTART TYPE	SELECT RESTART TYPE
$\operatorname{Pr.80}$	RESTART STALL LEVEL	STALL LEVEL WHILE RESTARTING
$\operatorname{Pr.81}$	RESTART DEC TIME	DEC TIME WHILE SPEED SEARCH
$\operatorname{Pr.82~}$	VOLTAGE RECOVER TIME	VOLTAGE INCREASING RATE

13. MONITOR function

While Panel is in MON mode, user can select which two status are to be monitored.
Pr. 98 is used to assign the parameter to be monitored, when "I" LED is on.
Pr. 99 is used to assign the parameter to be monitored, when "HZ" LED is on.
For example, the default value in Pr. 99 is 57. That means, 7-segment will display the value of Pr. 57 while "HZ"
LED is on.
Note : Under CTL mode, the display will show the paramter assigned by Pr. 99 .

13.1 OPERATING STATUS CHECK

Parameters from Pr. $57 \sim$ Pr. 61 are inverter running status for user monitoring purpose.
Pr. 57 HZ HZ status shows the running frequency.
Pr. 58 RPM RPM status is calculated by HZ status.
RPM = ($\mathbf{1 2 0}$ * HZ / POLE) * GEAR_RATIO\%
Refer to Section 5.4, description of Pr. 52 \& Pr. 53.
Pr. 59 VDCVDC is the DC voltage measured from internal Smoothing Capacitor. VDC = Pr.87(\%) * Pr.56(when Pr.55=0)
Pr. 60 VOUT VOUT is the Root-Mean-Square value of inverter output voltage.
Pr. 61 IRMS IRMS is the Root-Mean-Square value of inverter output current.

13.2 TERMINAL STATUS CHECK

User can easily check the input or output terminal status from following parameters :
TERMINAL STATUS is easily verified by select the corresponding parameter number.

PARAMETER	TERMINAL STATUS	
Pr. 62	DI1 INPUT TERMINAL STATUS	
Pr. 63	DI2 INPUT TERMINAL STATUS	
Pr. 64	DI3 INPUT TERMINAL STATUS	
Pr. 65	DI4 INPUT TERMINAL STATUS	
Pr. 66	RUN INPUT TERMINAL STATUS	
Pr. 67	REV INPUT TERMINAL STATUS	
Pr.68	DO1 OUTPUT TERMINAL STATUS	
Pr. 69	DO2 OUTPUT TERMINAL STATUS	
Pr. 70	RELAY OUTPUT STATUS	

13.3 A/D CONVERTER CHECK

Pr. 55 A/D CHANNEL SELECT
Pr. 56 A/D CONVERSION DATA
The PD Series inverter can monitor 5 analog input signals.
Use Pr. 55 to select the desired channel for monitoring, then the 10 -bits A/D converter of CPU will execute Analog to Digital conversion and put the conversion result in Pr. 56.
The range of the converted data is between 0 to 1023 corresponding to full range input.

Pr.55	Pr. 56 (A/D DATA)
0	VDC channel A/D value
1	IU channel A/D value
2	IV channel A/D value
3	AI1 channel A/D value
4	AI2 channel A/D value

14 MAINTENANCE \& ERROR MESSAGE

Monthly maintenance

a. Inverter runnning

Monitor and record the running status(ex. output current). Compare the data with the previous recorded .
b. Inverter power off

Check and Ensure all ventilation Fans are un-obstructed.
xamine the input and output power terminals for signs of overheating.
Three-Monthly maintenance
Perform monthly maintenance as described above.
Remove any accumulated dust from the equipment . Using a suction type cleaner with a non-conducting nozzle.

Error Messages :

ERROR CODE	MESSAGE DESCRIPTION	
n. --	NO ALARM	
n. OP	OVER VOLTAGE	Note: $\mathrm{n}=0$, present alarm type.
n. UP	UNDER VOLTAGE	$\mathrm{n}=1$, alarm type before.
n. OL	OVER LOAD	$\mathrm{n}=2$, alarm type twice before.
n. OH	OVER HEAT	$\mathrm{n}=3$, alarm type three times
n. OC	OVER CURRENT when normal run	before.
n. CA	OC when acceleration	
n. CD	OC when deceleration	
n. CB	OC when braking	
n. CS	OC detect by Software	
E-SP	Serial Port communication Error (REMOTE PANEL only)	

Counter Measure

OP : Check input voltage or modify deceleration rate
UP : Check input voltage
OL : Check load current
OH : If the OH is caused by external Digital Input, check external input source. Otherwise, check load current or decrease carrier frequency.
OC : Check motor wiring, or check inverter itself.
CA : Decrease acceleration rate.
CD : Decrease deceleration rate.
CB : Modify Pr.05, Pr.06, Pr.07, Pr. 08 .
CS : Check inverter by qualified engineer.
E-SP : Push any key will retry again. Or Power off the inverter, Check the cable for remote panel.
Avoid noise interference by otherpower cable

15 COMPUTER CONTROL

The PD Series Inverter has a build in RS-485 communication port on CON3 of CPU-Board. CON3 is a 5 -pin connector. The definition of all the connector pins are :

Pin 1: $\quad+5 \mathrm{~V}$
Pin 2: 0V
Pin 3 : \quad SIG +
Pin 4 : SIG-
Pin 5 : RESET OUTPUT(NOT USED BY COMPUTER)

15.1 PROTOCAL \& FORMAT

Baud Rate : 4800, 7 Bit data, Even parity, 2 Stop Bit.
Each PD-Series inverter has a pre-assigned UNIT ADDRESS in Pr.93. Computer may control any Inverter unit by select its corresponding UNIT ADDRESS.
Furthermore, the Computer may control all Inverter units at the same time if the "uu" code in command string is " 00 ".
NOTE : All code transfer between Computer and Inverter are ASCII code.

15.2 Computer to Inverter

Computer may send three types of message to Inverter
15.2.1 Control Command :(No response will send back from Inverter)
"C,uu,cc,fffff"
C : Head of COMMAND String
uu : unit number, from 00 to 99
When $u u=00$, all inverter unit must accept.
cc : control command code, from 00 to 15
The "cc" number is actually converted from four bits binary data, $\mathrm{cc}=8 *$ Bit-3 $+4 *$ Bit- $2+2$ * Bit-1 + Bit-0

Bit-0 : RESET INVERTER
Bit-1 : RUN
Bit-2 : REVERSE
Bit-3: JOG
fffff : set frequency, from 00000 to 20000 , representing desired $\mathrm{Hz}=0.00$ to 200.00 Hz .
15.2.2 Write Command :(No response will send back from Inverter)
"W,uu,nn,ddddd"
W : Head of WRITE String
uu : unit number, from 00 to 99
When $u u=00$, all inverter unit must accept.
nn : parameter number, from 00 to 99
ddddd : data value, from 00000 to 65535 , if data exceed upper and lower limits
(shown in parameter table) will be trimmed within boundary automatically.
15.2.3 Read Command :(Inverter will send back P-String after receive this string)
"R,uu,nn"
R : Head of READ String
uu : unit number, from 00 to 99
When $u u=00$, all inverter unit must accept.
Do not specify $u \mathbf{u}=00$ for R -String while multiple inverters are under control.
nn : parameter number, from 00 to 99

15.3 Inverter to Computer

Parameter \& Status Response(Response to Computer for R-string)

16 BLOCK DIAGRAM OF PD-INVERTER

Note:

*1. Only for PDF/PDV series inverter have PG feed back terminal.
*2. The analog signal wires should be shielded \& connected to the Earth.
*3. Refer to the section 2.5 to select proper discharge resistor.
*4. For the models with P,N terminal, must use separate Brake Discharge Unit and do not connect resistor to the P,N terminals directly.

[^0]: CHA PG
 Note : Four terminals "PG+", "PG-", "CHA" and "CHB" are not used in standard PD Series, they are reserved for PDF/PDV Series for accurate speed feed back.

[^1]: * L1, L2 are used for 220VAC single phase power line input.
 * U,V,W are for Motor.
 * B+, B- connect to brake resistor.

